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Abstract 
 

Riemann’s hypothesis has always been a challenge in number theory, thus the present article shows a 
general (i.e. valid for any non-trivial zero) and elementary (i.e. not using the theory of complex functions) 
proof of it, in which the constant +1/2 arises by itself and automatically. In addition the method gives the 
values of all the trivial zeroes of Riemann’s function. The following steps are used: The modified chi-
square function with its parameters Ω, k and ω=ω(k), in one of its four forms (±1·/)Χk

2(Ω,x/ω), as the 
interpolating function of the {nα} progressions and of the sums {∑nα} with α∈R so that k=2±2α for α<0 
and α>0 respectively; the Euler-MacLaurin formula; the shift real vector operator Σ≡ (Σα Σk)≡ (∆α ∆k)≡ 
(+1 (4α–2)) in the Euclidean 2D space (α k) and its extrusion to the imaginary axis it, leading to the 3D 
shift complex vector operator Σ≡(Σσ Σk Σit)≡(∆σ ∆k i∆t)≡(+1 (4σ–2)  it) with norm Σ2=16σ2–16σ+5+t2. 
The condition Σ=0 that is │Σ│=Σ=0 leads to prove RH.  
 

 
Keywords: Riemann’s hypothesis; numeric progressions; modified chi-square function; umbral calculus. 
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1 Introduction 
 
Riemann’s hypothesis has always been a challenge in number theory and its proof would be a proficient 
conclusion leading to further results in many fields not only of mathematics but also of physics [1-11]. Thus, 
mainly in the latest years, the utmost attention has been devoted to debate, deepen and try to solve this 
problem with admirable findings, though without reaching the final goal [12-21]. In addition claims have 
been made to its proof [22-24].   
   
In three previous articles by the same author [25-27] the finite sequences of prime numbers {Pm} have been 
examined experimentally from both the statistical and the analytical viewpoint fitting their differential 
distribution functions and the finite sequences of their parameter {ρm}≡{ln(mp)/ln(Pm)} and of their 
frequencies {fm} ≡{mp/Pm} by the modified chi-square function Χk

2(Ω,x/ω) with its three parameters Ω, k 
and ω=ω(k). Remarkable unexpected results have been found, among which the scale non-invariance of 
prime numbers, their scaling laws and their correspondence with the truncated progressions {nα} from both 
the statistical and the analytical viewpoint, just using the methodology of experimental mathematics.  
 
In the present article the problem of Riemann’s hypothesis is examined again fitting the progressions {nα} by 
the modified chi-square function in one of its four forms (±1·/)Χk

2(Ω,x/ω), according to the α range, just 
using analytic considerations, thus facing and solving it analytically in a general (that is holding for any non-
trivial zero tm with the index m∈N ranging from 1 up to ∞) and elementary (that is without using the theory 
of complex functions) way.    
 
The following steps are used for the proof. First of all, the modified chi-square function with its three 
parameters Ω, k and ω=ω(k), described in Ch. 2, in one of its four forms (±1·/)Χk

2(Ω,x/ω) is used as an 
interpolating function of the {nα} progressions and of their sums {∑nα} with α∈R, as reported in Ch. 3. 
Subsequently, the fourth chapter deals with the Euler-MacLaurin summation formula, together with its 
references to umbral calculus, so that the summation operation ∑ is identified as a shift operation and, from 
the geometric viewpoint, in the real plane (α k) the two lines k = 2 ± 2α for α < 0 and α > 0 respectively are 
set up along which all the progressions {nα} and {∑n=1→Nnα}≡{N α+1/(α+1)} lay. Finally, in the fifth chapter, 
the shift operation ∑ is associated with the shift real vector operator Σ ≡ (Σα Σk) ≡ (∆α ∆k) ≡ (+1 (4α–2)) in 
the Euclidean 2D real space (α k) while the extrusion to the imaginary axis it leads to the 3D shift complex 
vector operator Σ ≡ (Σσ Σk Σit) ≡ (∆σ ∆k i∆t) ≡ (+1 (4σ–2) it) with norm Σ2=16σ2–16σ+5+t2. The condition 
ζ(s)=∑nσ+it= 0 i.e. Σ=0 that is │Σ│=Σ=0 leads to prove Riemann’s hypothesis. Some examples of numerical 
checks are presented, along the article, just as experimental confirmations and verifications of the adopted 
methodology. In addition, the induction principle is used all over the work.  
   

2 The Modified Chi-square Function  
 
In the attempt to investigate whether and how the finite progressions {nα} with n∈N and α∈R can be 
interpolated, in the present report the innovative approach [25-27] is suggested using the modified chi-square 
function  
 

Χk
2(Ω,x/ω) = +[Ω/(2Γk/2)] ·[x/(2ω)]k/2–1·e–x/(2ω)                                                                                   (1) 

 
with k<2.0 and k∈R as an interpolating function of the progressions {nα} within the open range α∈(–1, 0). 
The rationale underlying the entire issue is to use this fit function taking advantage of the adjustment of its 
three parameters k, Ω and ω. In such a way the modified chi-square function can be regarded as an 
interpolating function of the finite progressions {nα} just like the xα function and just as the gamma function 
Γx=Γ(x) is an interpolating function of factorial numbers n! being n∈N and x∈R+.  
 
The modified chi-square function with k degrees of freedom is a new general form of the standard chi-square 
function [28,29] used also in statistics [30,31] where the two new parameters Ω and ω have been used and 
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Γk/2=Γ(k/2) is the standard gamma function necessary to the normalization. Its characteristics have already 
been described elsewhere [25-27] and here it is enough to remark that:   
 
              for k < 2                limx→0+Χk

2[Ω,x/ω] = +∞         and          limx→∞Χk
2[Ω,x/ω] = 0+  

              for k > 2                Χk
2[Ω,0] = 0                            and          limx→∞Χk

2[Ω,x/ω] = 0+  
 
In addition for k=2 the function Χk

2(Ω,x/ω) becomes constant. It is very interesting also to remark some 
features of its three parameters. The coefficient Ω shifts rigidly the function - and the related curve on the 2D 
real plane (x, Χ2) - up or down; the parameter k is responsible for the shape of the function (either a kind of 
exponential decay for k<2, or a constant function at k=2 or, for k>2, a function with absolute maximum at 
x=(k–2)·ω and then decreasing to 0+ towards infinity; the decay parameter ω stretches or compresses the 
function and the related curve along the x axis. In addition, it is easy to check that also the other three forms 
of the modified chi-square function that is –Χk

2(Ω,x/ω) +1/Χk
2(Ω,x/ω) and –1/Χk

2(Ω,x/ω)  are useful 
functions for the present article, the features of which can be easily derived. As a matter of fact, they can 
interpolate the progressions {nα} in the open ranges α∈(–2, –1)  α∈(0, +1) and α∈(+1, +2)  respectively, 
though with different values of Ω and ω.   
 

3 The Interpolation of Numeric Progressions  
 
The examination concerns the finite progressions {nα} with α∈(–2, –1), α∈(–1, 0), α∈(0, 1), α∈(1, 2) and so 
on, α∈R, with domain n∈N and co-domain R+, showing that any of them can be interpolated analytically by 
one of the four kinds of the modified chi-square function (±1·/)Χk

2(Ω,x/ω) with its own ad hoc parameters Ω, 
k and ω.    
 
As a matter of fact it is very simple to check analytically that the modified chi-square function Χk

2(Ω,x/ω) 
interpolates the {nα} progressions with ∀α∈R in the same way as the f(x)=xα function does, what means that 
both functions are interpolating functions of {nα} for non-integer values of n∈R+. In other words, any {nα} 
progression can be continued from the N field to the R+ field. Actually, it is possible to write again (1) as: 
   

Χk
2(Ω,x/ω) = {Ω/[2Γk/2·(2ω)k/2–1]} ·xk/2–1·e–x/(2ω)                                                                                 (2) 

 
so that, being the value of Ω (free parameter) at one’s own choice and being always x<<ω as experimentally 
verified too, it is possible to write  
 

Χk
2(Ω,x/ω) = 1·xk/2–1·e–x/(2ω) ≈ xk/2–1 = x±α                                                                                          (3) 

 
just choosing Ω=2Γk/2·(2ω)k/2–1 and simply setting  k/2–1=±α. Thus k=2 ± 2α so that, from the geometric 
standpoint, two lines are created in the Euclidean real plane (α k) of equations  
 

k = 2 + 2α   for α<0            and                   k = 2 – 2α    for α>0                                                    (4) 
 
with real domain α∈(–∞,+∞) and real co-domain k < 2 along which all the progressions {nα} and all their 
interpolating functions Χk

2(Ω,x/ω) lay. Simple numerical checks can be performed, as shown in the four 
examples of the next Figs. 1 through 4.  
 
The previous Fig. 1 shows the case of {nα} ≡{n–1.2} interpolated by the function –Χk

2(B,x/yo) with the 
following parameters: B=1.0E–16  k=2+2α=2+2·(–1.2)=–0.4  Γk/2= –5.821148568627 yo=8.33045883E+13  
R=1.000000000000=I <C>=<F>=4.17644568E–9  σc=9.71356E–9=σF LSS=2.08245E–7 Χ2

test=4.85305E–
46  where the calculations are made for 50M=5E7=5·107 terms of the progression (the plot shows just 50 
data-points) and the values I=R=1.000000000000 mean that they are valid up to the 12th decimal digit, i.e. 
within the precision of the calculations equal to δ=1E–12. The values of the least square sum LSS and of the 
Χ2

test are two further markers of the goodness of the fit.  
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Fig. 1. The progression {n–1.2} interpolated by –Χk

2(B,x/yo) with k = 2+2α = – 0.4  
 
The Fig. 2 reports the case of {nα}≡{n–0.3} as fitted by the function +Χk

2(A,x/xo) for 50 data-points with the 
following parameters: N=5E7=50M terms A=1.0E–6 k=2+2α=2+(–0.3)=+1.4 Γk/2=1.29805533 
xo=6.80082500E+27 R=1.000000000000=I <C>=<F>=6.764058E–3 σc=0.002197808=σF    LSS=0.333   
Χ2

test=2.6494E–26  
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Fig. 2. The progression {n–0.3} interpolated by +Χk

2(A,x/xo) with k = 2+2α = + 1.4   
 
The Fig. 3 reports the case of {nα}≡{n+0.2} as interpolated by the function  +1/Χk

2(A,x/xo) with the following 
parameters: N=5E7=50M terms A=1.0E–6 k=2–2α=2–2(+0.2)=+1.6 Γk/2=1.16422971 xo=3.422264E+31 
R=1.000000000000=I <C>=<F>=29.11700 σc=4.621575326 σF=4.621575035 Χ2

test=1.842485E–09    
 
The Fig. 4 shows the case of {nα} ≡{n+1.3} interpolated by the function –1/Χk

2(B,x/yo) for 50 data-points with 
the following features: N=5E7=5·107 terms B=1.0E–16 k=2–2α=2–2(+1.3)=–0.6  Γk/2=–4.326851108825  
yo=5.340564E+12 R=1.000000000000=I <C>=<F>=4.5378E+09 σc=3.091485E9  σF=3.091497E9    
 
Thus, within the many ranges α∈(–1, 0) α∈(–2, –1) α∈(–3, –2)  α∈(–4, –3) and so on, the interpolating 
functions of all the {nα} progressions are respectively +Χk

2(A,x/xo) –Χk
2(B,x/yo) +Χk

2(C,x/zo)–Χk
2(D,x/wo) 

in alternation etc. On the contrary, inside the positive ranges α∈(0, 1) α∈(1, 2) α∈(2, 3) α∈(3, 4) and so on 
the {nα} progressions are interpolated by the functions +1/Χk

2(A,x/xo) –1/Χk
2(B,x/yo) +1/Χk

2(C,x/zo)                      
–1/Χk

2(D,x/wo) etc.  
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 Fig. 3. The progression {n+0.2} interpolated by +1/Χk

2(A,x/xo) with k = 2–2α = + 1.6   
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Fig. 4. The progression {n+1.3} interpolated by –1/Χk

2(A,x/xo) with k = 2–2α = – 0.6   
 
All that is valid notwithstanding the huge differences among the coefficients A, B, C, D  etc. as well as 
among the decay or growth parameters xo, yo, zo, wo and so on.   
 
The situation, for just four ranges, is described by the following Table 1 where it is easy to check the 
symmetry in respect to the value α=0 that is Ω(α)=Ω(–α) for the coefficients and ω(α)=ω(–α) for the 
decay/growth parameters in the ranges α∈(±j; ±j+1).  
 
In the Table 1 the vector Σ will be introduced and discussed later on, while it is important to remark now that 
all the ranges are open and not closed. As a matter of fact it is easy to check that at the points (α,k)≡(n,2±2n) 
the modified chi-square function is undefined at all: for instance {nα}≈+Χk

2(C,x/zo) in the left 
neighbourhood (α,k)≡(–2-,–2-) while {nα} ≈–Χk

2(B,x/yo) in the right neighbourhood (α,k)≡(–2+,–2+) and the 
same for any integer value of α. This is also a consequence of the presence of the 1/Γk/2 function in the 
modified chi-square function, at least for α<0. Moreover, it is interesting to remark that in the left 
neighbourhood of (α,k)≡(0,2) that is at (0–,2–) the +Χk

2(A,x/xo)=+Χ2-
2(A,x/xo) function is the interpolating 

function of the progression {e–n}, that is of the function f(x)=e–x, while in the right neighbourhood, that is at 
(0+,2–), the +1/Χk

2(A,x/xo)=+1/Χ2+
2(A,x/xo) function is the interpolating function of the progression {e+n}, 

that is of the function g(x)=e+x, with A=2 and xo=1/2 in both cases.   
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Table 1. Interpolating functions for the {nα} progressions within the α and k ranges  
 

α range α range kα=k(α)               │Σ│= Σ              Interpol. funct .      
(–2, –1)                  (–2, 0)               k=2+2·α                   √5 – Χk

2(B,x/yo) 
(–1, 0)                    (0, +2)               k=2+2·α                   √[1+(4α–2)2] + Χk

2(A,x/xo) 
(0, +1)                     (0, +2)              k=2–2·α –√5 + 1/Χk

2(A,x/xo) 
(+1, +2)                    (–2, 0)              k=2–2·α –√5 – 1/Χk

2(B,x/yo) 
 

4 The Euler-Maclaurin Formula    
 
The next step involves the examination of the summation progressions {∑nα} with the index n running from 
1 up to N.  
 
It is well known that, for high enough values of N, the Euler-MacLaurin summation formula applies:  
 

∑n±α ~ ∫x±αdx + ε = x±α+1/(±α+1) + ε    
 

so that it is possible to write  
 

{ ∑n=1thruNn
±α} ≡ {N ±α+1/(±α+1)}                                                                                                           (5)  

 
(where the summation runs up to N) for high enough values of N. Actually, it would be better to say that any 
finite progression {∑n=1thruN→∞n±α} is equivalent to limN

�
∞{∑n=1thruNn

±α} what is equivalent to 
limN

�
∞{N ±α+1/(±α+1)}. It is easy to check also experimentally that, whatever the case, the percentage 

difference between the progression {∑n±α} and the next progression {N±α+1/(±α+1)} for an equal number of 
terms N sufficiently high shows that the limit holds:   
 

limN
�

∞[(∑n=1thruN n
±α) – (N±α+1)/(±α+1)] = 0         �        [(∑n=1thruN→∞ n

±α) – (N±α+1)/(±α+1)] ~ 0  
 
The situation is fully consistent with the umbral calculus [31-33] where the linear Q-integral operator 

LQ=∫Qdt such that (LQpn)(t)=∫Qpn(t)dt=pn+1(t)/(n+1) is introduced, operating on the basic set (pn(t)) of the 
polynomials in one variable defined over R, together with the shift operator Ea such that Eap(t)=p(t+a) for 
a∈R and the Q delta operator that examines Q(xn)=anx

n–1 in terms of a sequence of real numbers [34].     
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Fig. 5. The progression {∑n–0.75} interpolated by {N+0.25 / 0.25} with k’=2–2α’=1.5   

 
 



 
 
 

Lattanzi; BJMCS, 15(5): 1-14, 2016; Article no.BJMCS.25419 
 
 
 

7 
 
 

Again here too, some numerical checks which are presented in the next two figures can contribute to clarify 
the situation furthermore.  
 
The Fig. 5 shows the case of the progression {∑nα} ≡{ ∑n–0.75} that is {∑n–0.75} ≈{N 0.25/0.25} with the fit 
parameter R=0.999999998159 holding for 500K terms of both progressions, for 50 data-points that is 1out-
of10K terms.     
 
According to what already told and as experimentally checked, both functions are best fitted by the 
1/Χk’

2(A,x/xo) function with k’=2–2α’=1.5  
 
Fig. 6 shows the progression {∑nα}≡{ ∑n–0.3852} corresponding to the progression {∑n–0.3852} ≈ 
≈{N +0.6148/0.6148} for 500K terms of both progressions, with the fit parameter R=0.99999999999 and both 
progressions best fitted by the 1/Xk’

2(A,x/xo) function with  k’= =2–2α’=0.7704    
 

0 50k 100k 150k 200k 250k 300k 350k 400k 450k 500k
0

1000

2000

3000

4000

5000

6000

 n

Σ 
 n

 - 
0 

. 3
 8

 5
 2

   

0

1000

2000

3000

4000

5000

6000

n + 0 . 6 1 4 8   / 0 . 6 1 4 8

 
Fig. 6. The progression {∑n–0.3852} interpolated by {N+0.6148/0.6148} with k’=2–2α’=0.7704     

 
It is interesting to see just an example, from the viewpoint of experimental mathematics, shown in Fig. 7 
where the % difference ∆%=[n+0.6148/(0.6148)–∑n–0.3852]/∑n–0.3852·100 is reported vs. the counter n. Though 
for just 500K terms (50 data-points in the plot), the asymptotic limit limn→∞ ∆%=0- is clear undoubtedly.   
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Fig. 7. The % difference between {n+0.6148 / 0.6148} and  {∑n–0.3852}   
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The summation ∑ can thus be considered as a shift operation that moves any progression {nα} with α∈(h, 
h+1) up to the next range with α∈(h+1, h+2) that is {∑nα}�{N α+1/(α+1)}  the sum ∑ running up to N and 
the same happens for the progressions {n–α} that is at negative values of α. In such a way any {∑n–α} 
progression corresponds to {N–α+1/(–α+1)} with any range –α∈(h, h+1) shifted to the next range that is      –
α+1=α’∈(h+1, h+2). Owing to the property of scale invariance of the progressions {n±α} and {∑n=1→Nn±α} 
the result holds in any case, that is for any value of N, i.e. for an infinite number of terms. In addition, any 
progression {∑n±α} can be associated with the function ∑n=1→Nn±α so that also any function ζ(±α)=∑n=1→Nn±α 
corresponds to N±α+1/(±α+1), that is ζ(±α)=∑n=1→Nn±α=N±α+1/(±α+1), or ∫x±αdα=x±α+1/(±α+1). In other words, 
any progression {n±α} can be interpolated by the function x±α and by the function (±1·/)Xk’

2(Ω,x/ω) with 
n∈N, α∈R, x∈R+, k’=2±2(α+1) and the same holds for all the progressions {ζ(±α)}={ ∑n=1→Nn±α}. Any of 
them can be interpolated both by N±α+1/(±α+1) and by the function (±1·/)Xk’

2(Ω,x/ω) with k’=2±2(α+1).          
 

5 Riemann’s Zeta Function and Riemann’s Hypothesis Proven   
 
An equivalent geometric representation of the situation can be given in the real plane (α k) as depicted in the 
Fig. 8 where the symmetry, in respect to the k axis (equation α=0) that is Ω(α)=Ω(–α) for the coefficients 
and ω(α)=ω(–α) for the decay or growth parameters, is evident.    

 

 
 

Fig. 8. The lines k(α) = 2 ± 2α for {n α} with the interpolation functions (± 1/·)Χk
2  

Three shift vectors   Σ1 (α<–1)    Σ (–1<α<0)    and   Σ2  (α>0)  are shown as examples     
 

Such a procedure leads to find the values of all the trivial zeroes of Riemann’s zeta function (an already 
known result) and to a proof of Riemann’s hypothesis as it is going to be shown.     
 
Hence, as already seen, in the case α<0 writing the function ∑n=1→Nn–α is the same as writing (N–α+1)/(–α+1) 
and all the progressions {∑n–α}, thus the related functions ζ(±α)=∑n=1→Nn±α, lay along the two lines k = 2 ± 
2α on the plane (α k). In such a way it is possible to look at the summation operation ∑ just as at a shift 
vector operator Σ1 (as in Fig. 8) that shifts any progression {n–α}, and thus any function n–α, ahead along the 
line k=2+2α by an amount ∆α=+1 and ∆k=+2∆α=+2, that is with norm |Σ1|=Σ1=√5; this happens up to the 
point (α, k)≡(–1, 0) which is shifted by the vector Σ1 up to the point (α’, k’) ≡(0, +2). Hence, along this line 
k=2+2α, i.e. α=k/2–1, with negative α and within the bounds α<–1 and k<0 the following relationship holds:   

 
∑n–α = N–α+1/(–α+1) ≈ ± (–α+1)–1·Χk’

2(Ω,x/ω) =  
        = ± (–α+1)–1·(Ω/2Γk/2)·(x/2ω)k/2·ex/2ω =   
        = ± (–α+1)–1·(Ω/2Γ1+α)·(x/2ω)α·e(x/2ω)   

 
It is clear that in all the cases in which  ∑n–α=ζ(–α)=0  that is  ±Χk

2(Ω,x/ω)=0 the solutions, thus the 
Χk

2(Ω,x/ω)=ζ(–α) function zeroes, are driven just by the values of Γk/2=Γ1+α and consequently the 
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relationship ∑n=1thruN→∞n–α=ζ(–α) = (Ω/2Γ1+α)·(x/2ω)α·e(x/2ω) = 0 is trivially satisfied at all the points (α, k)≡ 
(α, 2+2α) ≡ (–1,0)  (–2,–2)  (–3,–4)  (–4,–6) …….. (– n,2+2n)   n∈N being at all these points  1/Γk/2 = 1/Γ1+α 
= 1/Γ0 = 1/Γ-1 = 1/Γ-2 = 1/Γ-3 = ……. = 0  These are just the poles of the gamma function Γ1+α=Γk/2 that is: α= 
–1  –2  –3  –4……. –n   and  k=2+2α= 0  –2  –4  –6  –8 …. (2+2n), an already well-known result.    
 
Hence it is very easy to find all the trivial zeroes of Riemann’s zeta function ζ(–α)=∑n=1→Nn–α in a simple 
way by the modified chi-square function what confirms not only the usefulness but also the reliability of the 
algorithm.  
 
The same procedure, as applied to the range α>0 with k=2–2α and k<2 leads to reject that there are zeroes of 
the zeta function at positive α values being, in this case,  
 

ζ(α) = ∑nα = Nα+1/(α+1) = ±1/Χk
2(Φ,x/φ) = ±(2Γk/2/Φ)·(x/2φ)1–k/2·ex/2φ ≠ 0           ∀α>0     

 
It is clear that, in this case, the result is a strict consequence of the fact that the function Γ(x) has no poles on 
the whole R+ plane being a definite positive function on the whole R+ plane. The same happens at the point 
(α, k)≡(0, +2) where ζ(α)= ζ(0)=∑n=1→Nn0≠0  as already told also about the left and the right neighbourhood 
of this point. 
  
From the geometric viewpoint, any point (±α, k) with any α and k<2  laying on the two lines  k= 2 ± 2·α is 
projected by the generic vector Σ up to the point (±α+1, k+2)  being: Σ1,k=+2   Σ2,k=–2  Σk=2·(2α–1)  
Σ1,α=Σ2,α=Σα=+1=∆α and |Σ| =Σ=√(Σk

2+ Σα
2)=√(∆α2+∆k2) the modulus of the vector Σ as in the previous Fig. 

8 and the next Fig. 9. In the latter, three typical vectors are highlighted (see also the Table 1): Σ1 for α<–1  
which has modulus  Σ1=√(12+22)=√5,  Σ2 for α>0  having modulus  Σ2=√[12+(–2)2]=√5  and Σ for α∈(–1, 0)  
having varying modulus Σ=√[12+(4α–2)2]=√(16α2–16α+5).   
 
In brief the equation  ∑n=1thruN→∞(n–α)=0 can be formally written using the generic vector operator  Σ  also as  
Σ(n–α)=0 being 0  the null vector, what means Σ=0 i.e. │Σ│=Σ=0. This artifice is very useful in discussing 
the next step.     
 
In other words the summation ∑ can be regarded as a shift vector operator Σ as depicted in Fig. 9 that shows 
the 2D situation in the (α k) plane in the range α∈(–2, +2) and k∈(–2, +2).   
 

 
 

Fig. 9. Examples of the three vectors Σ1 Σ2 and Σ along the lines k=2 ± 2α 
The envelope of the Σ vectors is the parabola of equation k = 1 – α

2 
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A special attention has to be devoted to the inner range α∈(–1,0) and k∈(0,2) which is the range inside which 
the Σ vector has a variable norm |Σ|(α)=Σ(α); within this range, the line k=2+2α with α<0 has been 
considered as having the equivalent equation k’=2+2(–α) with α>0, thus highlighting the negative values of 
α. Any point α∈(–1,0) and k∈(0,2) of this line with equation k’=2+2α’=2+2(–α) is shifted up to the 
symmetric line k’’=2–2α’’=2–2(α’+∆α)=2–2(α’+1)=2–2(–α+1)=2α so that the k component of the Σ vector 
is:  
 

Σk(α) = ∆k(α) = k’’–k’ = 2α– [2+2(–α)] = 4α–2  
 
Now, considering Euler’s real zeta function ζ(α), the equation ζ(α)=∑n=0thruN→∞n–α=0 inside this range can be 
formally written, using the shift vector operator Σ ≡ (Σα  Σk) ≡ (∆α ∆k) ≡ (1 4α–2), also as  Σn–α=0 being 0 
the null vector and U the  unit vector = Σ/|Σ| = Σ/Σ so that from the geometric viewpoint one can formally 
write:  
 

Σn=0→∞n–α = 0 = 0·U = |Σ|·U·n–α= Σ·U·n–α    
 
getting the equation:   
 

Σ = 0          �       |Σ| = Σ = √(∆α2+∆k2) = 0       �       √(16α2 – 16α + 5) = 0      
 
with the two complex solutions:                  α1,2 = +1/2 ± i/4 
 
what means, in other words, that the condition ∑n=0→∞(n–α)=0 is satisfied just when the shift vector Σ is 
horizontal at all i.e. Σk=∆k=4α–2=0 that is α=+1/2.   
 
Taking into account the extrusion to the third complex axis it, that is the case of the complex exponent s∈C 
of ζ(s)=0 i.e. s=σ+it (replacing the symbol α by σ, thus following the traditional symbolism) one gets for the 
zeroes of Riemann’s zeta function ζ(s)= ∑n=1→∞(n–s) the equation       
 

ζ(s) = ζ(σ+it) =∑n=1→∞(n–s) = ∑n=1→∞[n–(σ+it)] = 0    
 

 
 

Fig. 10. The extrusion of the real (σ, k) plane to the third imaginary axis it   
 

One should consider that in such a way, from the geometric standpoint, a new axis has been added to the 
previous two, i.e. the imaginary  it  axis orthogonal to both the σ and the k axes that is to the page along 
which the whole Fig. 9 has been extruded leading to Fig. 10. In such a manner the two previous equations of 
the lines k’=2+2·(–α) and k’’=2–2·(–α+1)=2α now represent the two half-planes having equations k’=2+2·(–
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σ) and k’’=2–2·(–σ+1)=2σ crossing one each other along the line (k=2)∩(σ=0) parallel to the imaginary axis 
it, thus forming a dihedron (see Fig. 10).  
 
All that implies that the generic 3D shift vector Σ has the components Σ ≡ (Σσ Σk Σt) ≡ (∆σ ∆k i∆t) ≡                                
(1 4σ–2 it) and, owing to the fact that we are in the Euclidean space where the metric is simply the unitary 
diagonal matrix of components δmn=Kroneker’s symbol (δmn=1 if m=n and δmn=0 otherwise), the norm of 
this new vector operator Σ is (using the summation convention):      
   

│Σ│= Σ = √(ΣmδmnΣn) =  √[(∆σ)2+(∆k)2+t2] = √[1+(4σ–2)2+t2] = √(16σ2–16σ+5+t2)   
 
Thus, using the same artifice as above, the equation to be solved now is:  
 

Σn–s = Σ(n–(σ+it))=0        �        │Σ│= Σ = √[1 + (4σ–2)2 + t2]=0        �        16σ2–16σ+5+t2=0    
 
Solving it leads to the complex solutions:   
 

σ1,2 = + 1/2 ± i/4·√(1+t2) …..………… ∀ t                                                                                        (6) 
 

i.e. taking into account just the positive t axis  
 

σm = + 1/2 + i/4·√(1+tm
2) …………… ∀ tm    i.e.   ∀m                                                                     (7) 

 
thus showing that all the non-trivial zeroes of Riemann’s function ζ(s)=ζ(σ+it)=∑n=0→∞(n–s)=∑n=0→∞(n–σ–it) 
have real part equal to +1/2 i.e. that they are located on the line Re(s)=+1/2 what is an elementary proof of 
Riemann’s hypothesis as well as of the symmetry of all the complex solutions laying along the line 
Re(s)=+1/2 in respect to the line {s∈C|Im(s)=0} i.e. the real axis σ i.e. it=0. This result is general in that 
valid for any value of  tm  that is for any  m value (with the index m∈N ranging from 1 up to ∞).  
 
Again, one can look at the situation just from the geometric point of view getting Fig. 11.  
 

 
 

Fig. 11. Riemann’s strip on the plane k = + 1 as seen from above  
Some Σ vectors laying on the infinitely long strip are shown  

 
All the Σ vectors lay on what can be called Riemann’s strip (different from the critical strip) i.e. on the 
infinitely long strip σ∈[–1/2 +1/2] of the complex plane k=1. The k components Σk of all these vectors are 
null satisfying the condition 4σ–2=0 i.e. σ=+1/2 for ∀t. Remarkably, this outstanding finding has been got in 
an elementary way that is without using the theory of the functions of complex variable and in a very plain 
manner.  
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Furthermore, in the real 2D case the whole geometric procedure is the same as projecting the vector Σ onto 
the line k’’=2–2·(–α+1)=2α  thus getting the vector Σ’  such that Σk = Σ’ k = 4α–2 which, as shown in Fig. 9, 
becomes null just at the point  
 

(α, k) ≡ (+1/2, 1) …………………….  i.e.  α = + 1/2       
 

while in the complex 3D case the whole geometric method is the same as projecting the vector Σ onto the 
plane k’’=2–2·(–σ+1)=2σ  thus getting the vector Σ’’  the real component of which, again shown in Fig. 9 as 
Σ’ , becomes null just at the point  
 

(σ, k, it) ≡ (+1/2, 1, it) …………………….  i.e.  σ = + 1/2      ∀ t 
 

Noticeably, in this elementary proof of Riemann’s hypothesis the positive constant +1/2 arises by itself and 
automatically in a straightforward and natural way.  
 

6 Conclusions 
  
The original and advanced algorithm presented in this article that treats the modified chi-square function, in 
one of its four forms ±(1·/)Χk

2(Ω,x/ω),  as an interpolating function of the progressions {n±α} - that 
seemingly might be applied even to other issues of number theory - represents an innovative approach 
leading to the remarkable result of the proof of Riemann’s hypothesis in a general (i.e. holding for any tm 
value with the index m∈N from 1 up to ∞) and elementary (i.e. that does not imply the use of the theory of 
complex functions) way.  
 
In the next future, two main developments, among all the other ones, of the research work will concern both 
the study of the shift vector operator Σ in connection with the Hilbert and Pòlya conjecture and the potential use of 
the modified chi-square function Χk

2(Ω,x/ω) with k>2 for the statistical treatment of the normalized spacing of the non-
trivial zeroes of Riemann’s zeta function, in the frame of random matrices and Gaussian ensembles.  
 

Competing Interests 
 
Author has declared that no competing interests exist. 
 

References  
 
[1] Sierra G, Rodriguez-Laguna J. The H=xp model revisited and the Riemann zeros.  arXiv:1102.5356v1 

[math-ph]; 2011.  
 
[2] Iliev II. Riemann zeta function and hydrogen spectrum. Electronic Journal of Theoretical Physics, 

EJTP. 2013;10(28):111–134.  
 
[3] Schumaier D, van Zyl BP, Hutchinson DAW. Quantum mechanical potentials related to the prime 

numbers and Riemann zeros. arXiv:0811.1389v1 [math-ph]; 2008.  
 
[4] Bagdasaryan A. An elementary and real approach to values of the Riemann zeta function. 

arXiv:0812.1878v4 [math.NT]; 2010.  
 
[5] Gupta KS, Harikumar E, de Queiroz AR. A dirac type variant of the xp model and the Riemann zeros. 

arXiv:1205.6755v3 [math-ph]; 2013.  
 
[6] Aref’eva IY, Volovich IV.  Quantization of the Riemann zeta-function and cosmology. arXiv:hep-

th/0701284v2 [math-ph]; 2007. 



 
 
 

Lattanzi; BJMCS, 15(5): 1-14, 2016; Article no.BJMCS.25419 
 
 
 

13 
 
 

[7] Schumayer D, Hutchinson DAW. Physics of the Riemann hypothesis. arXiv:1101.3116v1 [math-ph]; 
2011.  

 
[8] Celardo GL, Auerbach N, Izrailev FM, Zelevinsky VG. Distribution of resonance widths and 

dynamics of continuum coupling. Physical Review Letters, PRL. 2011;106:042501.  
 
[9] Aneva B. Symmetry of the Riemann operator. Physics Letters B. 1999;450:388–396.  
 
[10] Firk FWK, Miller SJ. Nuclei, primes and the random matrix connection. Symmetry. 2009;1:64-105. 

DOI: 10.3390/sym1010064, ISSN 2073-8994    
Available: www.mdpi.com/journal/symmetry  

 
[11] Rosu HC. Quantum hamiltonians and prime numbers. Mod. Phys. Lett. A. Brief Review, ©World 

Scientific Publishing Company. arXiv:quant-ph/0304139v4. 2003;18.  
 
[12] Conrey JB. The Riemann hypothesis. Notices of the American Institute of Mathematics. 2003;50:3.  
 
[13] Bombieri E. The Riemann hypothesis - official problem description. Clay Mathematics Institute, 

Reprinted in (Borwein et al. 2008); 2000. 
Available: http://www.claymath.org/millennium/RiemannHypothesis/riemann.pdf   

 
[14] Carlson J, Jaffe A, Wiles A. Editors. The millennium prize problems. Published by the Clay 

Mathematics Institute, Cambridge, Massachusetts, jointly with American Mathematical Society, 
Providence, Rhode Island, U.S.A.; 2006   

 
[15] Joffily S. Jost function, prime numbers and Riemann zeta function. arXiv:math-ph/0303014v1; 2003. 
 
[16] Castro C. On p-adic stochastic dynamics, supersymmetry and the Riemann conjecture.                           

arXiv :physics/o10114v2 [physics.gen-ph]; 2001. 
 
[17] Rouwhorst DD. The Riemann zeta function and the connection to the Hamiltonians in physics, 

Bachelor Thesis, University of Groeningen; 2014.  
Available:http://thep.housing.rug.nl/sites/default/files/theses/Bachelor%20thesis_Derk%20Rouwhorst
.pdf  

 
[18] Guilherme F, LeClair A. A theory for the zeros of Riemann ζ and other L-functions. Cornell 

University, Physics Department, Ithaca, NY 14850, arXiv:1407.4358v1 [math.NT]; 2014.   
 
[19] Coates J, Raghuram A, Saikia A, Sujatha R, Editors. The bloch-kato conjecture for the Riemann zeta 

function. Hardback, London mathematical Society, Lecture Note Series 418, © Cambridge University 
Press; 2015. 
ISBN 978-49296-7    

 
[20] Nakamura T. A complete Riemann zeta distribution and the Riemann hypothesis. Bernoulli. 

arXiv:1504.03438v1 [math.ST]. 2015;21(1):604–617. 
DOI: 10.3150/13-BEJ581,  
 

[21] Conrey B. American Institute of Mathematics, San Jose, California and University of Bristol, United 
Kingdom, Book Reviews, Iwaniec H. Lectures on the Riemann zeta function, Bulletin (New Series) 
of the American  Mathematical Society, University Lecture Series, American Mathematical Society, 
Providence, RI. 2014;62. 
ISBN 978-1-4704-1851.  
Available: http://dx.doi.org/10.1090/bull/1525 
(Article electronically published on January 14, 2016)   



 
 
 

Lattanzi; BJMCS, 15(5): 1-14, 2016; Article no.BJMCS.25419 
 
 
 

14 
 
 

[22] Lee JG. The Riemann hypothesis and the possible proof. Department of Electrical Engineering and 
Computer Science. Seoul National University, Seoul. 2014;151-744:KoreaarXiv:1402.2822v1 
[math.GM]. 

 
[23] Matnyak SV. Proof of the Riemann's hypothesis .// arXiv:1404.5872 [math.GM],22 Apr 2014  
 
[24] Pràstaro A. The Riemann hypothesis proved, Department SBAI - Mathematics, University of Rome 

La Sapienza, Via A.Scarpa 16, 00161 Rome, Italy.arXiv:1305.6845v10 [math.GM] 27 Oct 2015  
 
[25] Lattanzi D. Distribution of prime numbers by the modified chi-square function. Notes on Number 

Theory and Discrete Mathematics. 2015;21(1):18-30.  
Available: http://nntdm.net/papers/nntdm-21/NNTDM-21-1-18-30.pdf  

 
[26] Lattanzi D. Scaling laws of prime numbers by the modified chi-square function. Turkish Journal of 

Analysis and Number Theory; 2016. 
 
[27] Lattanzi D. Scale laws of prime number frequencies by the modified chi-square function. British 

Journal of Mathematics and Computer Science. 2016;13(6):1-21.  
           Article no.BJMCS.23200. Available: http://sciencedomain.org/issue/1545  
 
[28] Mathews J, Walker RL. Caltech, mathematical methods of physics. W.A. Benjamin Inc. New York 

N.Y; 1964.  
 
[29] Babusci D, Dattoli G, Del Franco M. Lectures on mathematical methods for physics. 

RT/2010/58/ENEA, ENEA-Roma-I.  
 
[30] Morice E. Dizionario di statistica. ISEDI. Milano. Italian. Also published as Dictionnaire de 

Statistique ©1967 by Dunod, Paris. French; 1971.   
 
[31] Young HD. Carnegie Institute of Technology. Statistical treatment of experimental data. McGraw-

Hill Book Company, Inc; 1962.  
 
[32] Popa EC. On an expansion theorem in the finite operator calculus of G-C rota. General Mathematics. 

2008;16(4):149-154.  
 
[33] Rota GC, Kahaner D, Odlyzko A. Finite operator calculus. J. Math. Analysis and Appl. 1973;42:3.  
 
[34] Maheswaran A, Elango C. Sequential representation of delta operator in finite operator calculus. 

British Journal of Mathematics and Computer Science. 2016;14:2. Article no. BJMCS. 23323.  
           ISSN: 2231-0851  
           Available: http://sciencedomain.org/issue/1645     
_______________________________________________________________________________________ 
© 2016 Lattanzi; This is an Open Access article distributed under the terms of the Creative Commons Attribution License 
(http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided 
the original work is properly cited. 
 
 
 
 
 
 

Peer-review history: 
The peer review history for this paper can be accessed here (Please copy paste the total link in your 
browser address bar) 
http://sciencedomain.org/review-history/14029 


