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1. Introduction

I n this study, we consider the problem of approximating a locally unique solution x∗ of the equation

F(x) = 0, (1)

where F : Ω ⊆ B1 −→ B2 be a Fréchet-differentiable operator, B1 and B2 are Banach spaces and Ω
is a nonempty convex subset of B1. Numerous problems in Mathematics and computational sciences are
written in the form of (1) using mathematical modeling [1–9]. Most solution methods for these equations
are iterative, since closed form solutions can rarely be found. We study the local convergence of the multi-step
Chebyshev-Halley-type [9] method defined for each n = 0, 1, 2, . . . by

yn = xn − [I + 1
2 K(xn)(1− δK(xn))−1]F(xn)−1F(xn),

zn = yn − F′(xn)−1[F′(xn) + F′′(un)(xn − vn)]F′(xn)−1F(yn),

xn+1 = zn − [I + K(xn) + γK(xn)2]F′(xn)−1F(zn),

(2)

where x0 is an initial points, γ, δ ∈ S, S = R or S = C, un = xn − 2
3 F′(xn)−1F(xn), K(xn) =

F′(xn)−1F′′(xn)F′(xn)−1F(xn) and vn = xn − F′(xn)−1F(xn).
The semi-local convergence of method (2) was given in [9] under the (C) conditions:

(C1) ‖F′′(x)‖ ≤ M for each x ∈ Ω,
(C2) F′(x0)

−1 ∈ L(B2,B1) for some x0 ∈ Ω and ‖F′(x0)
−1‖ ≤ β,

(C3) ‖F′(x0)
−1F9x0)‖ ≤ η

and
(C4) ‖F′′(x) − F′′(y)‖ ≤ ϕ(‖x − y‖) for each x, y ∈ Ω and ϕ satisfies ϕ(0) ≥ 0, ϕ(ts) ≤ ta ϕ(s) for each

t ∈ [0, 1], s ∈ (0,+∞), 0 ≤ a ≤ 1.

Similar methods have been consider by other authors using conditions (C1)-(C4) but the convergence
order is smaller [4–8]. The convergence order was shown to be 4 + 3a using recurrence relations [9]. Notice
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that method (2) uses the second Fréchet-derivative which is expensive in general. However, there are cases
e.g., when F′′ is a bilinear operator or other cases [1–3,7,8], when method (2) is very use full, since it is very
fast. Condition (C4) may be hard to verify or may not hold even in simple cases. Let us consider ϕ(t) = bt for
some b > 0. Consider a motivational example. Define function F on Ω = [− 1

2 , 5
2 ] by

F(x) =

{
x2 ln x2 + 2x4 − 4x3 + 2x2, x 6= 0,
0, x = 0.

Choose x∗ = 1. Then, condition (C4) is not satisfied since the third Fréchet derivative does not exists at x∗ = 1.
In this study, we present the local convergence not given in [9] and drop condition (C4). This way we

expand the applicability of method (2). Moreover, we refine Theorem 1 in [9] leading to a new semi-local
convergence for method (2), a wider convergence region, tighter error bounds on the distances ‖xn − x∗‖ and
an at least as precise information on the location of the solution. These advantages are obtained, since we find a
more precise region where the iterate lie resulting to tighter Lipschitz constants as well as the aforementioned
advantages. The new constants are special cases of the old ones, so the advantages are obtained under the
same computational cost.

The study is structured as follows; Section 2 contain the local convergence followed by the semi-local
convergence in Section 3. The numerical examples in Section 4 conclude this study.

2. Local convergence

The local convergence that follows is centered on some parameters and scalar functions. Let γ, δ ∈ R, w0 :
[0,+∞) −→ [0,+∞) be a continuous and non-decreasing function with w0(0) = 0. Define parameter ρ0 by

ρ0 = sup{t ≥ 0 : w0(t) < 1}. (3)

Let v1, v : [0, ρ0) −→ [0,+∞) be continuous, non-decreasing functions and δ ∈ R. Define functions g0 and
h0 on the interval [0, ρ0) by

g0(t) =
v1(t)

∫ 1
0 v(θt)dθ

1− w0(t)
,

and
h0(t) = |δ|g0(t)t− 1.

Suppose
h0(t) −→ +∞ or a positive constant as t −→ ρ−0 , (4)

we have h0(0) = −1. It follows by the intermediate value theorem that equation h0(t) = 0 has solutions in
(0, ρ0). Denote by ρ the smallest such solution in (0, ρ0). Define functions g1 and h1 on [0, ρ) by

g1(t) =

∫ 1
0 w((1− θ)t)dθ

1− w0(t)
+

g0(t)t
∫ 1

0 v(θt)dθ

2(1− |δ|g0(t)t)(1− w0(t))
,

and
h1(t) = g1(t)− 1,

where w : [0, ρ) −→ [0,+∞) is a continuous and non-decreasing function with w(0) = 0.
Suppose

h1(t) −→ +∞ or a positive constant as t −→ ρ−, (5)

we get h1(0) = −1. It follows by the intermediate value theorem that equation h1(t) = 0 has solutions in (0, ρ).
Denote by r1 the smallest such solution in (0, ρ). Suppose that

v(0) < 3. (6)

Define functions p and q on the interval [0, ρ0) by

p(t) =

∫ 1
0 w((1− θ)t)dθ + 1

3

∫ 1
0 v(θt)dθ

1− w0(t)
,
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and
q(t) = p(t)t− 1.

Suppose
q(t) −→ +∞ or a positive constant as t −→ ρ−0 , (7)

we obtain that q(0) = v(0)
3 − 1 < 0. Denote by rq the smallest solution of equation q(t) = 0 in (0, ρ0). Define

functions g2 and h2 on the interval [0, ρ) by

g2(t) =

∫ 1
0 w((1− θ)g1(t)t)dθg1(t)

1− w0(g1(t)t)
+

(w0(t) + w0(g1(t)t))
∫ 1

0 v(θg1(t)t)dθg1(t)
(1− w0(t))(1− w0(g1(t)t))

+
v̄(p(t)t)

∫ 1
) v(θt)dθ

∫ 1
0 v(θg1(t)t)g1(t)

(1− w0(t))3 ,

and
h2(t) = g2(t)− 1,

where function v̄ : [0, ρ0) −→ [0,+∞) is continuous and nondecreasing. Define parameter ρ̄0 by

ρ̄0 = max{t ∈ [0, ρ0] : w0(g1(t)t) < 1}.

Suppose
h2(t) −→ +∞ or a positive constant as t −→ ρ̄−0 , (8)

we have h2(0) = −1 < 0. Denote by r2 the smallest solution of equation h2(t) = 0 in (0, ρ̄0). Define parameter
¯̄ρ0 by

¯̄ρ0 = max{t ∈ [0, ρ0] : w0(g2(t)t) < 1}.

Define functions g3 and h3 on the interval [0, λ), λ = min{ρ̄0, ¯̄ρ0} by

g3(t) =

∫ 1
0 w((1− θ)g2(t)t)dθg2(t)

1− w0(g2(t)t)
+

(w0(t) + w0(g2(t)t))
∫ 1

0 v(θg2(t)t)dθg2(t)
(1− w0(t))(1− w0(g2(t)t))

+
g0(t)

∫ 1
0 v(θg2(t)t)dθg2(t)t

1− w0(t)
+
|γ|g2

0(t)
∫ 1

0 v(θg2(t)t)dθg2(t)t2

1− w0(t)
,

and
h3(t) = g3(t)− 1.

Suppose
h3(t) −→ +∞ or a positive constant as t −→ λ−, (9)

we get that h3(0) = −1. Denote by r3 the smallest solution of equation h3(t) = 0 in (0, λ). Define the radius of
convergence r by

r = min{ri}, i = 1, 2, 3. (10)

Then for each t ∈ [0, r)

0 ≤ gi(t) < 1, (11)

0 ≤ w0(t) < 1, (12)

0 ≤ w0(g1(t)t) < 1, (13)

0 ≤ w0(g2(t)t) < 1, (14)

and
0 ≤ p(t)t < 1. (15)

Some alternatives to the aforementioned conditions are; Equation

w0(t) = 1
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has positive solutions. Denoted by ρ0 the smallest such solution. Similarly, define ρ̄0, ¯̄ρ0. Functions, v1, v, w, v̄
defined on the same intervals as before are continuous and increasing. Then, clearly conditions (4), (5), (7), (8)
and (9) hold.

Let U(x, µ), Ū(x, µ) denote the open and closed balls in B1, respectively of center x ∈ B1 and of radius
µ > 0. The local convergence of method (2) is based on the preceding notation and conditions (A)

(a1) F : Ω ⊂ B1 −→ B2 is a twice continuously Fréchet differentiable operator.
(a2) There exists x∗ ∈ Ω such that F(x∗) = 0 and F′(x∗)−1 ∈ L(B1,B1).
(a3) There exists function w0 : [0,+∞) −→ [0,+∞) continuous and non-decreasing with w0(0) = 0 such that

for each x ∈ Ω
‖F′(x∗)−1(F′(x)− F′(x∗))‖ ≤ w0(‖x− x∗‖).

Set Ω0 = Ω ∩U(x∗, ρ0), where ρ0 is defined by (3).
(a4) There exist functions w : [0, ρ0) −→ [0,+∞), v : [0, ρ0) −→ [0,+∞), v̄ : [0, ρ0) −→ [0,+∞) continuous

and nondecreasing with w(0) = 0 such that for each x, y ∈ Ω0

‖F′(x∗)−1(F′(x)− F′(y))‖ ≤ w(‖x− y‖),

‖F′(x∗)−1F′(x)‖ ≤ v(‖x− x∗‖)

and
‖F′(x∗)−1F′′(x)‖ ≤ v̄(‖x− x∗‖).

(a5) Ū(x∗, r) ⊆ D and (6) hold, where r is given by (10).
(a6) There exists R ≥ r such that ∫ 1

0
w0(θR)dθ < 1.

Theorem 1. Suppose that the conditions (A) and (4)–(9) hold. Then, sequence {xn} generated for x0 ∈ U(x∗, r)−{x∗}
by method (2) is well defined in U(x∗, r) remains in U(x∗, r) for each n = 0, 1, 2, . . . and converges to x∗. Moreover, the
following estimates hold

‖yn − x∗‖ ≤ g1(‖xn − x∗‖)‖xn − x∗‖ ≤ ‖xn − x∗‖ < r, (16)

‖zn − x∗‖ ≤ g2(‖xN − x∗‖)‖xn − x∗‖ ≤ ‖xn − x∗‖, (17)

and
‖xn+1 − x∗‖ ≤ g3(‖xn − x∗‖)‖xn − x∗‖ ≤ ‖xn − x∗‖, (18)

where the functions gi, i = 1, 2, 3 are defined previously. Furthermore, the point x∗ is the only solution of equation
F(x) = 0 in Ω1 = Ω ∩ Ū(x∗, R).

Proof. Mathematical induction is employed to show estimates (16)–(18). Using (3), (a1)-(a3) and x0 ∈ U(x∗, r),
we have that

‖F′(x∗)−1(F′(x)− F′(x∗))‖ ≤ w0(‖x0 − x∗‖) ≤ w0(r) < 1. (19)

In view of (19) and the Banach lemma on invertible operators [1–3,7,8], we get that F′(x0)
−1 ∈ L(B2,B1),

‖F′(x)−1F′(x∗)‖ ≤ 1
1− w0(‖x) − x∗‖) , (20)

and u0 is well defined. By the definition of operator K, (a4) and (20), we obtain that

‖K(x0)‖ ≤ ‖F′(x0)
−1F′(x∗)‖‖F′(x∗)−1F′′(x0)‖‖F′(x0)

−1F′(x∗)‖‖F′(x∗)−1F(x0)‖

≤
v̄(‖x0 − x∗‖)

∫ 1
0 v(θ‖x0 − x∗‖)dθ‖x0 − x∗‖

(1− w0(‖x0 − x∗‖))2

≤ g0(‖x0 − x∗‖)‖x0 − x∗‖, (21)

‖δK(x0)‖ ≤ |δ|g0(‖x0 − x∗‖)‖x0 − x∗‖
≤ |δ|g0(r) < 1, (22)
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so δK(x0)
−1 ∈ L(B2,B1),

‖(I − δK(x0))
−1‖ ≤ 1

1− |δ|g0(‖x0 − x∗‖)‖x0 − x∗‖ , (23)

and ∥∥∥K(x0)
(

I − δK(x0)
−1
)∥∥∥ ≤ g0(‖x0 − x∗‖)‖x0 − x∗‖

1− |δ|g0(‖x0 − x∗‖)‖x0 − x∗‖ . (24)

By the first substep of method (2), we can write

y0 − x∗ = x0 − x∗ − F′(x0)
−1F(x0)−

1
2

K(x0)(1− δK(x0))
−1F′(x0)

−1F(x0). (25)

Then, using (10), (11) (for i = 1), (a4), (21)-(25), we have in turn that

‖y0 − x∗‖ ≤ ‖F′(x0)
−1F′(x∗)‖

∫ 1

0
‖F′(x∗)−1(F′(x∗ + θ(x0 − x∗))− F′(x0))(x0 − x∗)dθ‖

+
1
2
‖K(x0)(1− δK(x0))

−1‖

≤ g1(‖x0 − x∗‖)‖x0 − x∗‖ ≤ ‖x0 − x∗‖ < r, (26)

which shows (16) for n = 0 and y0 ∈ U(x∗, r). The point v0 ∈ U(x∗, r) by (26) and the choice of r. We shall
show that u0 ∈ U(x∗, r). By the definition of u0, we get in turn that

‖u0 − x∗‖ = ‖(x0 − x∗ − F′(x0)
−1F(x0)) +

1
3

F′(x0)
−1F(x0)‖

≤
∫ 1

0 w((1− θ)‖x0 − x∗‖)dθ‖x0 − x∗‖
1− w0(‖x0 − x∗‖) +

1
3

∫ 1
0 v(θ‖x0 − x∗‖)dθ‖x0 − x∗‖

1− w0(‖x0 − x∗‖)
≤ p(‖x0 − x∗‖)‖x0 − x∗‖ ≤ ‖x0 − x∗‖ < r, (27)

so u0 ∈ U(x∗, r). We can write by the second substep of method (2)

z0 − x∗ = y0 − x∗ − F′(x0)
−1F(y0)− F′(x0)

−1F′′(u0)(x0 − y0)F′(x0)
−1F(y0)

= (y0 − x∗ − F′(y0)
−1F(y0)) + F′(y0)

−1(F′(x0)− F′(y0))F′(x0)
−1F(y0)

−F′(x0)
−1F′′(u0)(x0 − v0)F′(x0)

−1F(y0), (28)

so

‖z0 − x∗‖ =

∫ 1
0 w((1− θ)‖y0 − x∗‖)dθ‖y0 − x∗‖

1− w0(‖y0 − x∗‖)

+
(w0(‖x0 − x∗‖) + w0(‖y0 − x∗‖))

∫ 1
0 v(θ‖y0 − x∗‖)dθ‖y0 − x∗‖

(1− w0(‖y0 − x∗‖))(1− w0(‖x0 − x∗‖))

+v̄(p(‖x0 − x∗‖)‖x0 − x∗‖)
∫ 1

0 v(θ‖y0 − x∗‖)dθ‖x0 − x∗‖
∫ 1

0 v(θ‖y0 − x∗‖)dθ‖y0 − x∗‖
(1− w0(‖x0 − x∗‖))2

≤ g2(‖x0 − x∗‖)‖x0 − x∗‖ ≤ ‖x0 − x∗‖ < r, (29)

so (17) holds for n = 0 and z0 ∈ U(x∗, r). Then, by the third substep of method (2) we can also write.

x1 − x0 = z0 − x∗ − F′(z0)
−1F(z0) + F′(z0)

−1(F′(x0)− F′(z0))F′(x0)
−1F(z0)

−K(x0)F′(x0)
−1F(z0)− γK(x0)

2F′(x0)
−1F(z0), (30)

so

‖x1 − x∗‖ ≤
∫ 1

0 w((1− θ)‖z0 − x∗‖)dθ‖z0 − x∗‖
1− w0(‖z0 − x∗‖)

+
(w0(‖x0 − x∗‖) + w0(‖z0 − x∗‖))

∫ 1
0 v(θ‖z0 − x∗‖)dθ‖z0 − x∗‖

(1− w0(‖z0 − x∗‖))(1− w0(‖x0 − x∗‖))
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+
g0(‖x0 − x∗‖)‖x0 − x∗‖

∫ 1
0 v(θ‖z0 − x∗‖)dθ‖z0 − x∗‖

(1− w0(‖x0 − x∗‖))

+|γ|
g2

0(‖x0 − x∗‖)‖x0 − x∗‖2
∫ 1

0 v(θ‖z0 − x∗‖)dθ‖z0 − x∗‖
(1− w0(‖x0 − x∗‖))

≤ g3(‖x) − x∗‖)‖x0 − x∗‖ ≤ ‖x0 − x∗‖ < r, (31)

so (18) holds for n = 0 and x1 ∈ U(x∗, r). The induction for (16)-(18) is completed, if we simply replace
x0, y0, z0, u0, v0, x1 by xm, ym, zm., um, vm, xm+1 in the preceding estimates. Then, from the estimate

‖xm+1 − x∗‖ ≤ c‖xm − x∗‖ < r, c = g3(‖x0 − x∗‖) ∈ [0, 1) (32)

we conclude that limm−→∞ xm = x∗ and xm+1 ∈ U(x∗, r). Let y∗ ∈ Ω1 with F(y∗) = 0. Define linear operator
T =

∫ 1
0 F′(x∗ + θ(y∗ − x∗))dθ. Then, using (a3) and (a6), we get that

‖F′(x∗)−1(T − F′(x∗))‖ ≤
∫ 1

0
w0(θ‖y∗ − x∗‖)dθ ≤

∫ 1

0
w0(θR)dθ < 1,

so T−1 ∈ L(B2,B1). Using the identity 0 = F(y∗) − F(x∗) = T(y∗ − x∗), we deduce that x∗ = y∗, which
completes the uniqueness part of the proof.

Remark 1. (a) Let w0(t) = L0t, w(t) = Lt and w∗(t) = L∗t (w∗ replacing w in (a4)). In [9], authors used
instead of (a4) the condition

‖F′(x0)
−1(F′(x)− F′(y))‖ ≤ L∗‖x− y‖ for each x, y ∈ Ω. (33)

But using (a4) and (33) we get that
L ≤ L∗ (34)

holds, since Ω0 ⊆ Ω. In case L < L∗. Then, the new convergence analysis is better than the old one.
Notice also that we have by (a3) and (33)

L0 ≤ L∗. (35)

The advantages are obtained under the same computational cost as before, since in practice the
computation of constant L∗ requires the computation of L0 and L as special cases. In the literature (with
the exception of our works) (33) is only used for the computation of the upper bounds of the inverses of
the operators involved.

(b) The radius rA = 2
2L0+L was obtained in [1–3] as the convergence radius for Newton’s method under

condition (a1)-(a4). Notice that the convergence radius for Newton’s method given independently by
Rheinboldt (see [1]) and Traub (see [2]) is given by

ρ =
2

3L∗
< rA. (36)

As an example, let us consider the function f (x) = ex − 1. Then x∗ = 0. Set Ω = U(0, 1). Then, we have

that L0 = e− 1 < L∗ = e, L = e
1

e−1 , so ρ = 0.24252961 < rA = 0.3827.

Moreover, the new error bounds [1–3] are

‖xn+1 − x∗‖ ≤ L
1− L0‖xn − x∗‖‖xn − x∗‖2,

whereas the old ones [7,8]

‖xn+1 − x∗‖ ≤ L
1− L‖xn − x∗‖‖xn − x∗‖2.

Clearly, the new error bounds are more precise, if L0 < L. Moreover, the radius of convergence of method
(2) given by r is smaller than rA (see (6)) .

(c) The local results can be used for projection methods such as Arnoldi’s method, the generalized minimum
residual method(GMREM), the generalized conjugate method(GCM) for combined Newton/finite
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projection methods and in connection to the mesh independence principle in order to develop the
cheapest and most efficient mesh refinement strategy [1–3,7,8].

(d) The results can be also be used to solve equations where the operator F′ satisfies the autonomous
differential equation [1–3]:

F′(x) = p(F(x)),

where p is a known continuous operator. Since F′(x∗) = p(F(x∗)) = p(0), we can apply the results
without actually knowing the solution x∗. Let as an example F(x) = ex − 1. Then, we can choose p(x) =
x + 1 and x∗ = 0.

(e) It is worth noticing that convergence conditions for method (2) are not changing if we use the new instead
of the old conditions [9]. Moreover, for the error bounds in practice we can use the computational order
of convergence (COC)

ξ =
ln
(
‖xn+2−xn+1‖
‖xn+1−xn‖

)
ln
(
‖xn+1−xn‖
‖xn−xn−1‖

) , for each n = 1, 2, . . .

or the approximate computational order of convergence (ACOC)

ξ∗ =
ln
(
‖xn+2−x∗‖
‖xn+1−x∗‖

)
ln
(
‖xn+1−x∗‖
‖xn−x∗‖

) , for each n = 0, 1, 2, . . . ,

instead of the error bounds obtained in Theorem 1.
(f) In view of (a3) and the estimate

‖F′(x∗)−1F′(x)‖ = ‖F′(x∗)−1(F′(x)− F′(x∗)) + I‖
≤ 1 + ‖F′(x∗)−1(F′(x)− F′(x∗))‖ ≤ 1 + L0‖x− x∗‖,

the second condition in (a4) can be dropped and can be replaced by

v(t) = 1 + L0t,

or
v(t) = M = 2,

since t ∈ [0, 1
L0
).

3. Semi-local convergence analysis

Let us modify the (C) conditions ( given in a non-affine invariant form in [9]) so as to be given in affine
invariant form as well as introduce the notion of the restricted convergence region. The conditions (C̄) are;

Definition 1. The set T = T(F, x0, y0) belong to class K = K(L0, L, L1, L2, η0, η), if

(C̄0) (C̄0)=(a1).
(C̄1) There exists x0 ∈ Ω such that F′(x0)

−1 ∈ L(B2,B1).
(C̄2) ‖F′(x0)

−1(F′(x) − F′(x0))‖ ≤ M0‖x − x0‖, for each x ∈ Ω. Set Ω0 = Ω ∩ B(x0, 1
M0

), we get
‖F′(x0)

−1F′′(x)‖ ≤ M̄ for each x ∈ Ω0.
(C̄3) (C̄3)=(C3).
(C̄4) ‖F′(x0)

−1(F′′(x)− F′′(y))‖ ≤ ϕ̄(‖x− y‖) for each x, y ∈ Ω0, where ϕ̄ is as ϕ.

We shall compare, the old condition (C) assuming they are given in affine invariant form with the new
conditions (C̄). Clearly,

Ω0 ⊆ Ω, (37)

M0 ≤ M̄ ≤ M, (38)

ϕ̄(t) ≤ ϕ(t), (39)
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hold in general and M̄
M0

can be arbitrarily large [1–3]. With these modifications as in [9], we define the functions

ϕ̄(t) = ḡ1(t) + (1 + t)ḡ2(t) + (1 + t + |γ|)ḡ3(t), (40)

h̄(t) =
1

1− ϕ̄(t)t
, (41)

ψ̄(t, u) =

(
2
3

)p
ϕ̄2(t, u)u + t2(1 + |γ|+ |γ|t)ϕ̄2(t, u) +

1
p + 1

(1 + t + |γ|t2)ϕ̄2(t, u)u

+
t2(1 + t + |γ|t2)

1(1− δt)
ϕ̄2(t, u) + t(1 + t)ϕ̄1(t, u)(1 + t + |γ|t2)ϕ̄2(t, u)

+
1
2
(1 + t + |γ|t2)2 ϕ̄2(t, u)2, (42)

where

ḡ1(t) = 1 +
1

2(1− δt)
,

ḡ2(t) =
t
2
+

t
2(1− δt)

+
t2

2(1− δt)
+

t3

8(1− δt)2 ,

ḡ3(t) = tḡ2(t) + t(1 + t)ḡ2(t) +
t2(1 + t)
2(1− δt)

ḡ2(t) +
t
2
(1 + t)2 ḡ2

2(t),

ϕ̄1(t, u) =
2p−1

3p u +
u

(p + 1)(p + 2)
+

(1 + δ)t2

2(1− δt)
+

t3

8(1− δt)2 ,

ϕ̄2(t, u) =
[
(

2
3
)pu + t2 +

(1 + t)u
p + 1

+
t2(1 + t)
2(1− δt)

]
ϕ̄1(t, u) +

t
2
(1 + t)2 ϕ̄1(t, u)2.

Moreover, define β̄ = 1, η0 = η, a0 = M̄η, b0 = ηϕ̄(η) and C0 = h(a0)ψ̄(a0, b0). Define the sequences
β̄n+1 = h̄(an)β̄n, η̄n+1 = C̄nη̄n,

ān+1 = M̄β̄n+1η̄n+1, b̄n+1 = β̄n+1η̄n+1 ϕ̄(η̄n+1),

ēn+1 = h̄(ān+1)ψ̄(ān+1, b̄n+1).

(43)

Next, we present the semi-local convergence analysis of method (2) using the conditions (C̄) instead of
conditions (C) used in [9].

Theorem 2. Suppose that the conditions (C̄) hold and Ū(x0, R̄η) ⊆ Ω, where R̄ = ϕ̄(ā0)
1−c̄0

. For ā0 = Mη, b0 =

ηϕ̄(η), c̄0 = h̄(ā0)ψ̄(ā0, b̄0). Suppose ā0 < s̄∗ and h̄(ā0)c̄0 < 1, where s̄∗ is the smallest positive solution of equation
ϕ̄(t)t− 1 = 0. Then, sequence {xn} starting from x0 ∈ Ω0 and generated by method (2) is well defined in U(x0, R̄η),
remains in U(x0, R̄η) for each n = 0, 1, 2, . . . and converges to a unique solution x∗ ∈ Ω1 = Ω ∩U(x0, R̃), where
R̃ = 2

ā0
− R̄. Moreover, the following estimates hold;

‖xn − x∗‖ ≤ en,

where en = ϕ̄(ā0)ηαnε
(4+3a)n−1

3+3a 1
1−αε(4+3a)n , α = 1

h̄(ā0)
, ε = h̄(ā0)c̄0.

Proof. Simply notice that iterate belong in Ω0 which is a more precise location than Ω used in [9]. Hence, the
proof of Theorem 1 can be repeated but using the bar constants and functions instead of the non bar constants
and functions, which is an important modification (see also the Remark that follows).

Remark 2. In view of (37)-(39), we have the advantages mentioned in the introduction of this study. For
example,

a0 = Mη < s∗ =⇒ ā0 = M̄η < s̄∗,

h(a0)c0 < 1 =⇒ h̄(ā0)c̄0 < 1,

but not necessarily vice versa, where s∗ is the smallest positive solution of ϕ(t)t− 1 = 0.
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4. Numerical examples

We present the following example to test the convergence criteria.

Example 1. Let B1 = B2 = R3, D = B(0, 1), x∗ = (0, 0, 0)T . Define F on D by

F(u) = F(u1, u2, u3) = (eu1 − 1, u2
2 + u2, u3)

T . (44)

For the points u = (u1, u2, u3)
T , the Fréchet derivative is given by

F′(u) =

 eu1 0 0
0 2u2 + 1 0
0 0 1

 .

Using the norm of the maximum of the rows and (a3)-(a4), we see that since F′(x∗) = diag(1, 1, 1), we can

define functions for method (2) by w0(t) = (e− 1)t, w(t) = e
1

e−1 t, v(t) = v̄(t) = e
1

e−1 . Then, the radius of
convergence using (10) is given by

r1 = 0.13043162089314655482930049856805,

r2 = 0.015754168279106986472193341342063 = r,

r3 = 0.064012457484415613562234170785814.

Local results were not given in [9] but if they were, then w0(t) = w(t) = et, v̄(t) = v(t) = e, so old

r1 = 0.052167745643160665092175065638003,

r2 = 0.0017930634000776965713414012881799 = r,

r3 = 0.020054377144156372569927526683387.

5. Conclusion

Major concerns in the study of the convergence for iterative methods (local or semilocal) are; the size of
the convergence domain, the selection of the initial point and the uniqueness of the solution. We address these
problems using method (2) under sufficient convergence conditions which are weaker than the ones in [9] for
the semilocal convergence case. This way we extend the convergence domain require fewer iterates to achieve
a desired error tolerance and provide a better location on the location of the solution. We also examine the local
convergence case not studied in [9]. In the future we will employ our technique to extend the applicability of
other iterative methods too.
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