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ABSTRACT

In this paper, some fixed point theorems in 2-metric spaces are established. Some of the
theorems are generalizations of fixed point theorems that were proved by Lal and Singh in 2-
metric spaces.
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1. INTRODUCTION

In 1906, Frechet [1,2] introduced the notion of
metric as an abstract generalization of length
concept. In 1963, Gahler [3] introduced the
notion of 2-metric as an abstract generalization
of the notion of area function for Euclidean
triangles. Many fixed point theorems appeared
in 2-metric spaces in later years analogous to
the fixed point theorems in metric spaces proved
by various authors like Iseki [4], Lal and Singh
[5], Rhoades [6] etc.

In this present work, we generalize the fixed
point theorems that are proved by Lal and

Singh [5]. In what follows X and R stand for a
non-empty set and the real line respectively.

1.1 Preliminaries

In this section, we present some basic
definitions which are needed for the further
study of this paper.

1.1.1 Definition

A point xe X is said to be a fixed point of a
self-map f: X > X if f(x)=x.

1.1.2 Definition

Let X be a non-empty set
andd: XxXxX —>R. Forall x,y,z and u

in X ,if d satisfies the following conditions

(a) d(x,y,z)zO if at least two of x,y,z

are equal
d(x,y,z)=d(x,z,y)=d(y,z,x)=
(c) d(x V,Z )Sd(x V,u )+d(x,u,z)+d(u,y,z)

Then d is called a 2-metric on X and the pair
(X ,d ) is called a 2-metric space.

1.1.3 Definition

Let (X,d) be a 2-metric space. A sequence
{xn} in X is called a Cauchy sequence, if

d(x,,x ,a)—>0as m,n—>o forall ac X .

1.1.4 Definition

Let (X,d) be a 2-metric space. A sequence
{xn} is said to converge to a point x in X if

hrnd(x xa) 0 forevery a in X .

n?
n—>o0

1.1.5 Definition

A 2-metric space (X,d) is said to be a
complete 2-metric space if every Cauchy
sequence in X convergesin X .

1.1.6 Remark
Let {xn} be a sequence in a complete 2-metric

space (X,d).
that d(x,,x

If there exists 7 €(0,1) such
@) <" d(x,,,x,,a) for every

a in X and every non-negative integer 7, then

{xn} converges to a pointin X .
1.1.7 Definition

Let (X,d) be a 2-metric space. A mapping
T:X —> X is called a contraction on X if
there exists a real number 4 with 0 </ <1 such
that d (Tx,Ty,a) < hd (x,y,a) for all x,y,a in
X .

1.2 Some Fixed Point Theorems for Self -
maps

Several theorems have been proved for the
existence of fixed points in 2-metric spaces. In
1978, Lal and singh [5] proved some fixed point
theorems for self-maps on a complete 2-metric
space. In this section, we generalize those fixed
point theorems.

1.2.1 Theorem

Let O<a<l.
real numbers such that p+¢g <1.

Let p and g be non-negative
Suppose that
f and g are two self maps on a complete 2-
metric space (X,d). If
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@ alp-q|<1-(p+9)
b)  d(f(x),g(y)a)< amax{d (x,y,a),d(x, f(x),a),d(y,g(y),a)} +
(-a)(pd(x,g(»).a)+qd(y, f(x),a))

whenever x, y,a are distinct pointsin X', then f and g have a unique common fixed pointin X .

Proof: Fix x, € X . Define a sequence {x,} in X as follows.

Xy = f(xzn)
X,,., =8(x,,,,) for n=0,1,2,...
First we show that d(x,,,x,,.;,X,,,,) =0 . We have
d(X5,3%5,05X2,00) = A (%X5,,1,X5,125%,,,)
=d(f(x,,),8(xy,,1),%,,)

< a max {a?(xz,7 R ),d(xZn,f(xzn ), X,, ),
d(%30,8(%,), %, )} + (=) [ pd(x,,.8(%,,).%,,)

+q d(xz,m,f(xz,,),xz,, )]

= @ max {d(x2n,x2,1+1,x2n) , d(xzn,x2n+1,x2n ) , d(x2,1+1,x2,1+2,x2n)}
+(1-a) [pd(xzn,x2n+2,x2”) + qd(Xy,00 %0 %,, ):I

= d(x2n+1ax2n+2’x2n)

= d(XZn’x2n+1’x2n+2) sa d(x2n’x2n+l’x2n+2) < d(‘x2n’x2n+1’x2n+2) (since O0<a <l1)

= d(xZn’x2n+1’x2n+2) =0 - (1)

Now we have

d(xznuaxzmz ,a)=d(f(x2n),g(x2n+l),a)
< omax {d(x2n’x2n+l’a)'d(xZn’f(XZn)’a)‘d(x2n+l’g(x2n+l)’a)}

+(l-a) I:p d(xZn’g(x2n+l)’a)+q d(x2n+1 ’f(xzn)’a):l
=amax {d(xzn,xzm,a) ’d(x2n+l’x2n+2’a)} +(l-a)

pd (x2n’x2n+2’a)

= d(x2n+l’x2n+2’a) < amax {d(xZn’xZnH’a) > d(x2n+1’x2n+2’a)} +(I-a)

pd(xy,.%,,,,.a) —(2)

Put M = max {d(x,,,%,,,,a),d(X,,,,X,,,,a)} . Then the following cases are arise.

Case -1

Suppose that M = d (x,,,x,,,,,a).
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Then d(x2n+1,x2n+2,a) <a d(xzn,x2n+1,a) +(l-a)p d(xzn,x2n+2,a)
<a d(xznaxzn+1aa) +(-a)p (d(x2n5x2n+2’x2n+l) +
d (X, Xy00a) + d(x2n+1,x2n+2,a))
=a d(x2n,x2n+1,a)+ (I-a)p (d(xzn,x2n+1,a) +
d(xznﬂ,xzm,a)) (since d ()ch,xz,ﬁz,xz"+1 ) =0)

caot(d-a)p d(x,,,

S X, ,a
1 (1 a) 2n+1 )

= d(x2n+1,x2n+2,a)
+(1-
Put B = —015_ ((1_00;))5
From the inequality (a), it follows that 0< B <1,
Then d(x2n+1,x2n+2,a) <p d(xZn,xZnH,a) -3
Case -2
Suppose that M = d(xz,H,,be,a).
Then d(x2n+1,x2n+2,a) <a d(x2n+1,x2”+2,a) +(-a)p d(x2,1,x2n+2,a)
= (I-a)d(xy,,%,.0,a) < (1-a) pd(x,,,X,,,,,a)
= d(x2n+1,x2n+2,a) <p d(xZn,x2n+2,a)
<p d(xZn,x2n+l,a)+q d(x2n+1,x2n+2,a)

= (I-9) d(x2n+1’x2n+2’a) < pd(x2n5x2n+l’a)

= d(x2n+l’x2n+2’a) < ELJ d(x2n’x2n+l’a)

1-g
P
Put }/_[l—qj

d(x2n+l’x2n+2?a) <7 d(xznaxzn+1aa) - (4)
Since p+g<1, p<l-q = 1L<1 = 0<y<l
—-q
From (3) and (4) we have
6l(‘)CZn+l’x2n-¢—2’a) < max{ﬂ’}/} d(x2n’x2n+l’a) d (5)
Similarly

d(xznaxzn+1a ) = (g(XZn D> f(x5,), a)
d(f(x,),8(x,,).a)
< max {,B 7} d(x,,,.%,,,a) — (6)
Put 6 = maX{ } 5) and (6). Then we get the following
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d(x2n+l’x2n+2’a) <6 d(xznax2n+1aa)

d(x,,,%,,,,a) <6 d(x2n—1’x2n’a)
Similarly d(X,,,X,,,a) <& d(x,, 5,%,,,a)
From these three, we get

d ('x2n+l s X242 a) < &d ('x2n—2 s X 15 a)
Proceeding in this way, we obtain

d(Xy015X0000,@) < 8"d(%y,%,,a) where 0< 8 <1
= d(%y,,1,%,,,,,a) = 0 as n—>oo forevery ain X .

= {x,}isa Cauchy Sequencein X -

Since X is complete 2-metric space, {x,} convergesin X .

= there exists a point Z € X such that rlzlj;]i x,=zin X.

Now we prove that Z is a common fixed point of both f and g in X. By the properties of 2-metric,
we have

d(Zag(Z)aa) d(Z,g(Z),th) + d(Z’xZnJrI’a) + d(xz,m,g(z),a)
d(ng(Z)’x2n+l) + d(Z’x2n+1’a) + d(f(xzn),g(z),a)

< d(z,8(2),%,,,,) + d(2,%,,,,.a) + amax {d(x,,,z,a)
d(x,,, [ (x,,),0).d(z,g(2),a)} + 1-a) (pd(x,,,g(2),a) +
qd(z, f(x,,),a))

=d(z,8(2),%,,.,) + d(2,%,,,,,a) + amax {d(x,,,z,a)
d(Xy%,,,,a) | d(z,8(2),a)} + (1-a) (pd(x,,,g(2),a) +

q d(Z’ x2n+1 b a))

IN

Letting n — o0 we get d(z,g(z),a) <« d(z,g(z),a)+ (I-a)p d(z,g(z),a)
= (a+(-a)p) d(z.g(2),a)

(I-a)(1-p) d(z,g(z),a) < 0

d(z,g(z),a) =0 for every d € X

z=g(2)
Z is afixed point of & in X

ud

Similarly, we prove that Z is a fixed point of S in X . Hence Z is a common fixed point of S and

gin X,
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1.3 Uniqueness of the Fixed Point

Let W be another common fixed point of fand g in X.
Then S(W)=gw)=w.
Then d(Z,W,a) = d(f(Z)5g(W)5a)
< o max {d(z,w,a),d(z,f(z),a),d(w,g(w),a)} + (l-)
(p d(Z,g(W), a) +4q d(W,f(Z),Cl))
=a d(z,w,a) + (1-a) (p+q) d(z,w,a)
= (a+(1-a)(p+q)) d(z,w,q)
= dw,z,a)<0
= d(w,z,a)zO
= W=z
Hence z is the unique common fixed pointof f'and g in X .
1.3.1 Remark

The following corollary — 2.3 is a fixed point theorem that was proved by Lal and Singh. It can be

k4 5

in our generalized fixed point

easily proved by taking =k, +k, +k,, p= " and ¢ = "

theorem — 2.1.

1.3.2 Corollary [5]

Let / and & be two self-maps on a complete 2-metric space (X,d) such that
@ d(f(x),g),a) <k d(x,y,a) + k,d(x, [(x),a) + k; d(y, f(x),a) +

k4 d(xa g(y)a a) + k5 d(yag(y)aa)
for all X,y,a in X andeach k; =0

() 2, k<1
© |-k (+k+k) <1-3" &

Then fand g have a unique common fixed point in X .
1.3.3 Theorem

Suppose that P21 and 0<h<l_ Let {f,, :n=0,12,..} pe a sequence of self-maps on a

complete 2-metric space (X, d) such that

d(f, (), £,/ (), @) < hmax. {d(x, y,a), d(x, £, (x),@), d(y. £, (1),@)
L(d £, (@) + d (0, ) (2),0) )|

For every X, ¥, a in X . Then there exists a unique common fixed point of Jyin X.

Proof: Fix X, € X . Define a sequence 1X,} in X as follows.
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X = o (%5,5)
X, = 1,7 (%,,.1) where n=0,1,2,3....
First we prove that d(Xy,5%y,.15%3,4,) =0 for n=0,1,2,
We have d(x2n’x2n+l’x2n+2) = d(x2n+1’x2n+2’x2n)
= d(fo" (x3,) 5 foar” (%30) 5%,
< h max. {d(xQn,xM,xQn) ,d (xy,, 7 (X)) X5,)s
d (X S G %, ) o [y o () ,)
A /i (0, )5%,) ] |
= hd (X000 fr (X))
=hd (xz,”, ,x2n+2,x2n)
=h d(x2,1,x2n+l,x2”+2)
= d( Xy, X1 Xp0) S Hd (Xy, X500, %5,,5)
= d(x2n,x2n+1,x2n+2) =0
Now d (X, %,,a) = d(f," (%) £;7(x,).a)
<hmax. {d(x,,x,,a) .d (%, £, (x,).a) .d (%, £, (x,).a),
Al d (3, £7 (0 )va) + d (s £, (5.0 ] |
= h max {d(xo,xl,a) ,d(x,x,,a) , ) d(xo,xz,a)}
< h max. {d(xo,xl,a) ,d(x,x,,a), ) [d(xl,xz,a) + d(xo,xl,a)] }
Put M = max {d(xo,xl,a) ,d(x,x,,a) , ) [d(xl,xz,a) + d(xo,xl,a)] }
f M =d(x1,x2,a) then we get d(xlaxzaa) <h d(xlaxzaa) which is a contradiction.
f M =Y (d(xo,xl,a) + d(xl,xz,a))
Then d(x,x,,a) <% (d(xo,xl,a) + d(xl,xz,a))
Now d(xo,xl,a) < (d(xo,xl,a) + d(xl,xz,a))
= d(xoaxlaa) +d(x13x29a) <h (d(xoaxlaa) + d(xlaxzaa))WhiCh is also a contradiction.

We must have M =d(x0,xl,a)

Then d(xl,xz,a) <h d(xo,xl,a)

similarly d (%,,X;,a) <h* d(x,,x,a)

Continuing in this way we get @(X,,%,,,,@) < h"d(x,,x,,a)

We have d(xn’xn+m’a) < d(xn’xn+m’xn+l) + d(xn’xn+l’a) + d(xn+l’xn+m’a)
n+m-2 n+m—1
< Zk:l d('xk’xk+1"xn+m) + Zk:n d(xkaxkﬂaa)

But d (X, X%, ) < B (X0, %, %,,,, ) and d (%, %,,.a) < h'd (x,,x,,a)
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n+m-— 2 n+m-2
:Z xk’xk+1"xn+m)$z h d(‘x0"x1’ n+m)

< h" Lhd(xo,x,, X)) —>0as n—o.

n+m— l
Similarly Z' xk,xk+1,a) —>0asn—w.

Hence d(x,,x,,,,a) >0 as n—>oo.
= {xn} is a Cauchy sequence in X . Since X is complete, {xn} converges some point z in X .

Now we prove that z is a unique common fixed point to each f , n=0,1,2,...

Now d(z, £, (2).a) <d(z. £,/ (2).x,,) + d(2,%,,,a) + d(x,,. £,/ (2).a)
=d(z,%,,,0) + d(z, £,/ (2).x,,) + d (1, (x,,). 1, (2).a)
<d(z,x,,,a) + d(z,fo"(z),xzn) + hmax {d(z,x,,,a),
d(z, £, (2),a),d(x,, ,%,,,a),

HdGx, a+dx, . (2),0)] }

When #—>® and X, —>Z

d(z. £, (2).a) < hmax {d(z, £,/ (2),a).1d(z. £,/ (2),a)}
= d(zf/(2).a) <hd(zf/(2).a)
= d(z,fop(z),a) =0V aelX
= fi''(2) =z
= Z is a fixed point of 57
Also we have d (2. £,/ (2).a) = d(,/ (2). £, (2).a)
< h max {d(z,z,a), d(z,fo"(z),a) ,d(z,fn"(z),a)‘
%(d(z,fnp(z),a) +d(z,f0p(z),a))}
= hmax {d(z, £,/ (2),a) . +d(z, 1,/ (2),a)|

=hd(z.f}(2).a)
d(z.f(2).a) <hd(zf)(2).a)
=N d( f/(2).a)=0
= f(2)=z

Hence Z is a fixed point of f 7.

. z'is a common fixed point of f,” and f,” (n=1,2,...). If possible z # w be another fixed point.

Then f,’(w)=f"(w)=w.
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Now d(z,w,a) = d(f,"(2). 1," (w).a)
<hmax {d(z,w,a),d(z,f,’ (2).a).d(w. " (w).a),
(21, 00.a) d (w. £ (2),a))}
= h max {d(z,w,a),0,0 ,%(d(z,w,a)er(z,w,a))}
= hd(z,w,a)
a’(z,w,a) Shd(z,w,a)

:>d(z,w,a)=0
= z=w

-, z is a unique common fixed point of f,” and f,” -

If we put p =1, then z is a unique common fixed point of f

_in X ,where n=0,1,2,3,...
1.3.4 Corollary
Let O0<h<I1. Let f and g be two self-maps on a complete 2-metric space (X,d) satisfying
d(f(x),g(y),a) <hmax {d(x,y,a), d(x, f(x),a),d(y,g(y),a) ,

1(d(x,g(y).a) +d(y, f(x),a))|

for every X, ),a in X . Thenfand g have a unique common fixed point in X.
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