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Abstract
Let N = prqs be prime power moduli where p and q are unbalance prime numbers for 2 ≤ s < r. If q < p < λq
and qs < pr < λqs, and
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which leads to the factorization of the moduli N = prqs in polynomial time. The second assaults on s
multi prime power moduli are described Ni = pri q

s
i for i = 1, 2, . . . , ω. We use lattice basis reduction

techniques to obtain the parameters (x, yi) or (y, xi) after transforming the system of equations into a
simultaneous Diophantine approximation problem, and it resulted in simultaneous factorization of s moduli
Ni in polynomial time.

Keywords: Unbalance prime numbers; factorization; LLL algorithm; diophantine approximations; continued
fraction.

1 Introduction

The public key notion arose from an attempt to overcome two issues: key distribution and the development of
digital signatures. Whitfield Diffie and Martin Hellman developed the conceptual framework in 1976, and it
was a huge success. The same key is used for both encryption and decryption in traditional encryption [1], [2],
[3]. This is an optional requirement. Instead, a cryptographic system might be created that uses one key for
encryption and another key for decryption. In addition, these algorithms have the following significant feature:
Knowing simply the algorithm and the encryption key makes determining the decryption key computationally
impossible. Furthermore, some algorithms, such as RSA, have the following properties: For encryption, one of
the two associated keys can be utilized, while the other can be used for decryption.

Illustrates the Public key process. The steps are:

1. A pair of keys is generated by each system.

2. Each system makes its encryption key (public key) public while preserving its private key.

3. If A intends to transmit a message to B, the message is encrypted using B’s public key.

4. When B receives the message, it uses its private key to decrypt it. Because only B has access to the
message’s private key, no one else can decrypt it.

Public key cryptography is regarded as one of the most significant breakthroughs in the world of information
security. Electronic data transmission is occasionally vulnerable to eavesdroppers; this can be mitigated by
implementing robust encryption techniques [4], [5]. RSA cryptosystem, created by Rivest, Shamir, and Adleman,
is recognized as a fast-growing, dependable, and usable cryptosystem due to its efficiency in ensuring secrecy,
integrity, and verification of the entities participating in communication through insecure communication channels
[6].

According to Takagi, one of the most important RSA variants in the cryptanalytic attack is multi prime power
modulus N = prq for r ≥ 2. (1998). Based on his findings, the system decrypted data faster than the usual RSA
modulus N = pq [7]. Several cryptanalytic assaults on the moduli N = prq for r ≥ 2 and N = prqs r, s ≥ 2 with
r > s have been reported since then, utilizing various approaches detailed in [8], [9], [10], [11], [12] and [13].

The prime power moduli N = prqs are among the RSA cryptosystem variants that have been observed to be
more efficient in both encryption and decryption than the normal RSA modulus N = pq, according to [14].
Using complicated mathematics and logic, the cryptosystem achieves all cryptographic goals such as privacy
and authenticity in digital communication channels. The integer factorization problem is integrated in the
cryptosystem’s security [15], [16], [17],[18], [19]. The prime power moduli go through the same key generation,
encryption, and decryption operations as regular RSA and its variants, with the exception that the decryption
phase is faster.

Lim et al. presented a cryptoanalytic attack on the prime power moduli N = prqs, where they used Takagi’s
approach to discover prime factors (p, q) when gcd(r, s) = 1. They demonstrated that their technique decrypted
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data 15 times faster than the usual RSA cryptosystem, according to [14]. Lu et al. (2015) reported another partial

key exposure attack on the moduli N = prqs where gcd(r, s) = 1, and the authors prove that min
(

l
r+l

, 2(r−l)
r+l

)
fraction of least significant bit(s) (LSBs) or most significant bit(s) (MSBs) of p is required to factor N in
polynomial time [20].

Theorem 1.1. Let x ∈ R and p
q

be a rational fraction such that gcd(p, q) = 1 and q < b if x = a
b

with
gcd(a, b) = 1. If ∣∣∣∣x− p

q

∣∣∣∣ < 1

2q2
,

then p
q

is a convergent of the continued fraction expansion of x.

Theorem 1.2. (Simultaneous Diophantine Approximations) There is a polynomial time algorithm, for given
rational numbers of the form α1, ..., αn and 0 < ε < 1, to compute integers p1, ..., pn and a positive integer q
such that

max
i
|qαi − pi| < ε and q ≤ 2

n(n−3)
4 [12].

Theorem 1.3. Let N = prqs be a known integer of unknown factorization with gcd(r, s) = 1 and p = Nα,
q = Nβ. Suppose that ξ LSBs or MSBs of puqv are known, where u, v are two selected non-negative integers
satisfying u

r
> v

s
.Then one can recover the prime factors p and q in polynomial time if ξ = αβ(su − rv) log2N

[21].

Theorem 1.4. Let N = p2q be a Prime Power RSA modulus with unknown factors p, q such that q < p < 2q. Let

a, b be suitably small integers with gcd(a, b) = 1 such that |ap2−bq2| < N
1
2 . Let e be a public exponent satisfying

the equation eX−NY = ap2 + bq2 +Z with gcd(X,Y ) = 1. If X < N
3(ap2+bq2)

and |Z| < |(ap2−bq2|
3((ap2+bq2)

N1/3. Using

the continued fraction algorithm he showed that every exponent e in these classes yields the factorization of N

in polynomial time, and the number of such weak keys is at least N
1
3
−ε where ε > 0 is arbitrarily small for large

N [9].

Theorem 1.5. Suppose that N = prq is a prime power modulus with q < p < 2q, and e < φ(N) < N −(
2
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r+1 N

r
r+1 − 2

r−1
r+1N

r−1
r+1

)
satisfying an equation

ed − kφ(N) = 1 for some unknown integers φ(N), d,k. If φ(N) > 3
4
N with N > 8d and from lemma 3.2,∣∣∣∣(2
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r+1 p

r2−r−1
r+1 q

r
r+1

)∣∣∣∣ (p+ 2−
2r+1
r+1 p

r
r+1 q−

r
r+1

)
< 1

8
Nω where ω < 1, and d < Nδ. If δ < 1−ω

2
, then

∣∣∣∣∣∣ e

N −
(

2
2r+1
r+1 N

r
r+1 − 2

r−1
r+1N

r−1
r+1

) − k

d

∣∣∣∣∣∣ < 1

2d2

[10].

Theorem 1.6. Suppose that Ni = pri qi, 1 ≤ i ≤ n for n ≥ 2, be n moduli. Let N = min Ni and ei,
i = 1, ...., n, be n public exponents. Define δ = nκ−ωn+n

(n+1)
where 0 < ω ≤ 1. Let 1 < ei < φ(Ni) < Ni − ψ where

ψ = Ni − 2
2r+1
r+1 N

r
r+1

i − 2
r−1
r+1N

r−1
r+1

i . If there exist an integer d < Nδ and n integers ki < Nδ such that

eid− kiφ(Ni) = 1

for i = 1, ..., n, then one can factor the n moduli N1, ..., Nn in polynomial time [10].
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Theorem 1.7. Let N = p2q2 be a multi prime power modulus with q2 < p2 < 2q2 and the relation 1 < e <

φ(N) < N+2
1
4N

1
2 −
(

2
1
2N

3
4 + 2

1
4N

3
4

)
hold satisfies equation ed−kφ(N) = 1 for some unknown integers φ(N),

d, and k. If d < 1
2
(N + 2

1
2N

3
4 − ξ)N−δ, then∣∣∣∣∣ e

N + 2
1
2N

1
4 − ξ

− k

d

∣∣∣∣∣ < 1

2d2

[8].

Theorem 1.8. Let Ni = p2i q
2
i , 1 ≤ i ≤ n be n prime power moduli and N = min{Ni}, ei, h2i = (pi − 1)(qi − 1)

be n public exponents. Define δ = n−γn
(n+1)

where 0 < γ ≤ 4
5

. Let 1 < ei < φ(Ni) < Ni − ξ where ξ = 2N
3
4 +N

1
2 .

If there exist an integer d < Nδ and n integers ki < Nδ such that

eid− kiφ(Ni) = 1

for i = 1, ..., n, then one can factor n moduli N1, ..., Nn in polynomial time [8].

2 Attack Using Continued Fraction Method to Factoring N =
prqs

In this section, we present results using continued fractions to factor multi prime power modulus N = prqs with
2 ≤ s < r for some unknown parameters (φ(N), x, y, p, q) using one of the appropriate approximation of φ(N)

given as φ(N) ≈ λ
r−s
2r

(
N

r+s
2r

+N
r+s−2

2r

)
−N

r+s−1
2r

(
λ
r−s+1

2r + λ
r−s−1

2r

)
where (N, e) are public keys satisfying

key equation ex2 − y2φ(N) = z. Let N = prqs be prime power moduli where p and q are unbalance prime
numbers for 2 ≤ s < r. If q < p < λq and qs < pr < λqs, then

λ−
1
2rN

1
2r < q < N

1
2r < p < λ

1
2rN

1
2r

and approximation of

φ(N) ≈ λ
r−s
2r

(
N

r+s
2r

+N
r+s−2

2r

)
−N

r+s−1
2r

(
λ
r−s+1

2r + λ
r−s−1

2r

)

Proof. Suppose N = prqs, q < p < λq and qs < pr < λqs for 2 ≤ s < r with λ > 2, then multiplying by pr

gives prqs < p2r < λprqs which implies N < p2r < λN , that is N
1
2r < p < λ

1
2rN

1
2r . Also, since N = prqs, then

qs = N
pr

which in turn implies λ−
1
2sN

1
2s < q < N

1
2s . Since p and q are unbalance prime numbers, for λ > 2, we

have
λ−

1
2rN

1
2r < q < N

1
2r < p < λ

1
2rN

1
2r .

Also, from the given modulus N = prqs the eulers totian function can be defining as φ(N) = pr−1qs−1(p −
1)(q − 1), which allawed us to compute a better approximation of φ(N) using the primes p ≈ λ

1
2rN

1
2r and

q ≈ λ−
1
2rN

1
2r as follows:

φ(N) = pr−1qs−1(pq − (p+ q) + 1)

But p+ q = λ−
1
2rN

1
2r + λ

1
2rN

1
2r and

pq = λ
1
2rN

1
2r

(
λ−

1
2rN

1
2r

)
= λ

1
2r
− 1

2rN
1
2r

+ 1
2r

= λ0N
2
2r

= N
1
r
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With

pr−1qs−1 =
(
λ

1
2rN

1
2r

)r−1 (
λ−

1
2rN

1
2r

)s−1

= λ
r−1
2r N
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(
λ

1−s
2r N
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2r

)
= λ
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2r N

r+s−2
2r

Therefore

φ(N) = λ
r−s
2r N
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2r

(
N

1
r −

(
N

1
2r

(
λ−

1
2r + λ

1
2r

))
+ 1
)
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2r N
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(
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1
r −N

1
2r λ−

1
2r −N

1
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1
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− 1

2rN
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+ 1
2rN

r+s−2
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2r + λ
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2r N
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2r
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2r N

r+s
2r − λ

r−s−1
2r N

r+s−1
2r − λ

r−s+1
2r N

r+s−1
2r + λ

r−s
2r N

r+s−2
2r

= λ
r−s
2r

(
N

r+s
2r +N

r+s−2
2r

)
−N

r+s−1
2r

(
λ
r−s+1

2r + λ
r−s−1

2r

)
This completes the proof.

Theorem 2.1. Let N = prqs be a multi prime power modulus with condition q < p < λq and qs < pr < λqs

where p and q are distinct unbalance prime numbers and 2 ≤ s < r with λ > 2. Also, suppose that (e,N)
and (x, p, q, φ(N)) are public and private key tuples respectively such that ex2 − y2φ(N) = z where 1 < e <

φ(N) < λ
r−s
2r

(
N

r+s
2r +N

r+s−2
2r

)
−N

r+s−1
2r

(
λ
r−s+1

2r + λ
r−s−1

2r

)
. Let W = pr−2qs−2(p− 1)(q − 1) be known. If

p ≈ λ
1
2rN

1
2r and q ≈ λ−

1
2rN

1
2r and z < N

1+2αr
2r then

x <

√√√√λ
r−s
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(
N
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2r +N

r+s−2
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)
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r+s−1
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(
λ
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2r

)
2N
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2r

and

∣∣∣∣∣∣ e

λ
r−s
2r

(
N
r+s
2r +N

r+s−2
2r

)
−N

r+s−1
2r

(
λ
r−s+1

2r +λ
r−s−1

2r

) − y2

x2

∣∣∣∣∣∣ < 1
2(x2)2

, which leads to the factorization of N into

unbalance prime factors p and q in polynomial time.

Proof. Let N = prqs be the multi prime power modulus satisfying the key equation ex2 − y2φ(N) = z where

φ(N) = pr−1qs−1(p− 1)(q − 1), and suppose thatz = N
1+2αr

2r , then we can have the following

ex2 − y2(pr−1qs−1(p− 1)(q − 1)) = z

ex2 − y2
(
λ
r−s
2r

(
N

r+s
2r +N

r+s−2
2r

)
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r+s−1
2r

(
λ
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λ
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λ
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N
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(
λ
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Therefore, from Theorem 1.1 we can write

N
1+2αr

2r

x2
(
λ
r−s
2r

(
N

r+s
2r +N

r+s−2
2r

)
−N

r+s−1
2r

(
λ
r−s+1

2r + λ
r−s−1

2r

)) < 1

2(x2)2

then

x <

√√√√(λ r−s2r

(
N

r+s
2r +N

r+s−2
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)
−N

r+s−1
2r

(
λ
r−s+1

2r + λ
r−s−1

2r

))
N

1+2αr
2r

.

Hence y2

x2
can be found from the convergents of the continued fractions expansion of

e(
λ
r−s
2r

(
N
r+s
2r +N

r+s−2
2r

)
−N

r+s−1
2r

(
λ
r−s+1

2r +λ
r−s−1

2r

)) .

Algorithm 1 : An ouline on how Theorem 2.1 works

1: Initialization: The public key pair (N, e) and Z satisfying Theorem 2.1.
2: Choose r, s, to be suitable small positive integers where 2 ≤ s < r.
3: for any (r, s) do

4: The convergents y2

x2
of the continued fractions expansion of

e
e(

λ
r−s
2r

(
N
r+s
2r +N

r+s−2
2r

)
−N

r+s−1
2r

(
λ
r−s+1

2r +λ
r−s−1

2r

)) .

5: end for
6: Compute φ(N) := ex2−z

y2

7: Compute H := gcd(φ(N), N)
8: Compute pr−2 := gcd(Z,H)
9: Compute qs := N

pr

10: return prime factors p and q.

2.1 Attacks on Generalized System of Equations Using

φ(Ni) <
(
λ
r−s
2r

(
N

r+s
2r +N

r+s−2
2r

)
−N r+s−1

2r

(
λ
r−s+1

2r + λ
r−s−1

2r

))
as App-roximation

of φ(N)

In this section, we show that if ei < φ(Ni) < φ(Ni) <

(
λ
r−s
2r

(
N
r+s
2r +N

r+s−2
2r

)
−N

r+s−1
2r

(
λ
r−s+1

2r + λ
r−s−1

2r

))
, then

Ni = pri q
s
i , can be factored simultaneously using simultaneous Diophantine Approximation and lattice basis

reduction methods for i = 1, ..., j and 2 ≤ s < r.

Theorem 2.2. Let Ni = pri q
s
i be the multi prime power moduli where q < p < λq, qs < pr < λqs 2 ≤

s < r, λ > 2 and Ji = pr−2
i qs−2

i (pi − 1)(qi − 1) be known. Let (ei, Ni) and (x, pi, qi, φ(Ni)) be public and
private key tuples satisfying the equestion of the form eix

2 − y2i (φ(N)) = z such that 1 < ei < φ(Ni) <(
λ
r−s
2r

(
N

r+s
2r +N

r+s−2
2r

)
−N

r+s−1
2r

(
λ
r−s+1

2r + λ
r−s−1

2r

))
. Let N = max{Ni}, define Λ = r+s(ω)−r+s(αω)−rξω

r+s(1+3ω)

for 0 < α, ξ < 1. If there exists integers x, yi < NΛ, then one can simultaneously factor ω moduli N1, ..., Nω in
polynomial time for i = 1, ..., ω,.
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Proof. Suppose Ni = pri q
s
i be ω multi prime power moduli and N = max{Ni}, let W = λ

r−s+1
2r

i N
r+s−1

2r
i +

λ
r−s−1

2r
i N

r+s−1
2r

i if yi < NΛ, then eix
2 − y2i φ(Ni) = z can be rewritten as

eix
2 − y2i (pr−1

i qs−1
i (pi − 1)(qi − 1)) = z

eix
2 − y2i

(
λ
r−s
2r
i

(
N

r+s
2r
i +N

r+s−2
2r

i

)
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r+s−1
2r

i

(
λ
r−s+1

2r
i + λ

r−s−1
2r

i

))
= zi

eix
2 − y2i

(
λ
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2r
i N

r+s
2r
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r−s
2r
i N

r+s−2
2r
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2r
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r+s−1
2r
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r−s−1

2r
i N

r+s−1
2r

i

)
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eix
2 − y2i

(
λ
r−s
2r
i N

r+s
2r
i −Wi +Wi −

(
λ
r−s
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i N

r+s
2r
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2r

i

)
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i

)
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λ
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r+s−2
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i

)
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(
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2r
i N

r+s
2r
i + φ(Ni)− λ
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i N
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i

)
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λ
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i −Wi + λ
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i

x2 − y2i
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∣∣∣∣zi + y2i

(
Wi − λ

r−s
2r
i N

r+s
2r
i + φ(Ni)− λ

r−s
2r
i N

r+s−2
2r

i

)∣∣∣∣
λ
r−s
2r
i N

r+s
2r
i −Wi + λ

r−s
2r
i N

r+s−2
2r

i

.

Suppose N = max{Ni} and yi < NΛ,

∣∣∣∣λ r−s2r
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N , for r, s > 0 with r > s and∣∣∣∣Wi − λ
r−s
2r
i N

r+s
2r
i + φ(Ni)− λ

r−s
2r
i N

r+s−2
2r

i

∣∣∣∣ < NΛ+ r
r+s

ξ for 0 < ξ,Λ < 1, zi < N
1
r
+α

∣∣∣∣∣∣∣∣
zi + y2i

(
Wi − λ

r−s
2r
i N

r+s
2r
i + φ(Ni)− λ

r−s
2r
i N

r+s−2
2r

i

)
λ
r−s
2r
i N

r+s
2r
i −Wi + λ

r−s
2r
i N

r+s−2
2r

i

∣∣∣∣∣∣∣∣ ≤
∣∣∣∣∣∣

zi + y2i

(
NΛ+ r

r+s
ξ
)

λ
r−s
2r
i N

r+s
2r
i −Wi + λ

r−s
2r
i N

r+s−2
2r

i

∣∣∣∣∣∣
<
N

1
r
+α +NΛ

(
NΛ+ r

r+s
ξ
)

r
r+s

N

<
N

1
r
+α +N2Λ+Λ+ r

r+s
ξ

r
r+s

N

<
N2Λ+Λ+ r

r+s
ξ+α−1

r
r+s

<
r

r + s
N3Λ+ r

r+s
ξ+α−1

This implies ∣∣∣∣∣∣ ei

λ
r−s
2r
i N

r+s
2r
i −Wi + λ

r−s
2r
i N

r+s−2
2r

i

x2 − y2i

∣∣∣∣∣∣ < r

r + s
N3Λ+ r

r+s
ξ+α−1.

For the unknown integer positive integer x, we assume that ε = r
r+s

N3Λ+ r
r+s

ξ+α−1, with Λ = r+s(ω)−r+s(αω)−rξω
r+s(1+3ω)

,
then

NΛεω =

(
r

r + s

)ω
N3Λ+ r

r+s
ξ+α−1 =

(
r

r + s

)ω
For

(
r
r+s

)ω
< 2

ω(ω−3)
4 · 3ω with ω ≥ 2, we get NΛεω < 2

ω(ω−3)
4 · 3ω. It follows that if x < NΛ then x <

2
ω(ω−3)

4 · 3ω · ε−ω. Hence∣∣∣∣∣∣ ei

λ
r−s
2r
i N

r+s
2r
i −Wi + λ

r−s
2r
i N

r+s−2
2r

i

x2 − y2i

∣∣∣∣∣∣ < ε, x < 2
ω(ω−3)

4 · 3ω · ε−ω.
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Using Theorem 1.2, we can obtain the unknown parameters x and yi. One can observe that from eix
2−y2i φ(Ni) =

zi we get

φ(Ni) =
eix

2 − z
y2i

gcd(φ(Ni), Ni) = Hi

pr−2
i = gcd(Ji, Hi)

qsj =
Ni
pri
.

Finally, the prime factors (pi, qi) of the prime power moduli Ni can be found simultaneously in polynomial time
for Ni for i = 1, . . . , ω.

Let

Ψ1 =
e1

λ
r−s
2r

1 N
r+s
2r

1 −W1 + λ
r−s
2r

1 N
r+s−2

2r
1

, Ψ2 =
e2

λ
r−s
2r

2 N
r+s
2r

2 −W2 + λ
r−s
2r

2 N
r+s−2

2r
2

Ψ3 =
e3

λ
r−s
2r

3 N
r+s
2r

3 −W3 + λ
r−s
2r

3 N
r+s−2

2r
3

Algorithm 2 : An ouline on how Theorem 2.2 works

1: Initialization: The public key pair (Ni, ei) and J2i satisfying Theorem 2.2.
2: Choose r, s, t ≥ 2, r > s and N = max{Ni} for i = 1, . . . , ω.
3: for any (N,ω,Λ) do

4: ε := r
r+sN

3Λ+ r
r+s

ξ+α−1 where Λ = r+s(ω)−r+s(αω)−rξω
r+s(1+3ω)

5: µ := [3ω+1 × 2
(ω+1)(ω−4)

4 × ε−ω−1] for ω ≥ 2.
6: end for
7: Consider the lattice L spanned by the matrix D as stated below.
8: Applying the LLL algorithm to L yields the reduced basis matrix F .
9: for any (D,F ) do

10: R := D−1

11: U = RF .
12: end for
13: Produce x, yi from U
14: for each triplet (x, yi, ei) do

15: φ(Ni) :=
eix

2−zi
y2i

16: Hi := gcd(φ(Ni), Ni)
17: pr−2

i := gcd(J2i, Hi)
18: qsi :=

Ni
pri

19: end for
20: return the prime factors (pi, qi).
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Example 2.3. We consider the following three prime power moduli and their three public exponents respectively.

N1 = 30547462777418192734300011829012850136616057013386865937024462445700407515743169919

N2 = 19801671372526055840282235881678051303754688669545711332940157933191562132951552050283

N3 = 15494833653326715590612681690254814068206695895885269863560044699223424589474977410829

e1 = 26785686609020686026410310038255985292116049663757445712183771166964838716166145133

e2 = 8447487518936057807108730931124815951433849837849755936229954172922270355243957212802

e3 = 12696668631371641094184299664227725212654063183751801419808568235277615999743624692637

Let the following integers be known

J21 = 1239145542053020092694574699245905558838659577320576

J22 = 103482342159245180813597767338949835437286140201074792

J23 = 114295667357708162877255778471568250899657840285427936

Then N = min(N1, N2, N3) = 19801671372526055840282235881678051303754688669545711

332940157933191562132951552050283, ω = 3 with Λ = (r+s)(ω)−(r+s)(αω)−rξω
(r+s)(1+3ω)

= 0.09421400400 and

ε := r
r+s

N3Λ+ r
r+s

ξ+α−1 = 0.001257293434.Using Theorem 1.8, we obtain

µ = [3ω+1 · 2
(ω+1)(ω−4)

4 · ε−ω−1] = 16207216480000

Consider the lattice L spanned by the matrix

D =


1 −[µη1] −[µη2] −[µη3]

0 µ 0 0

0 0 µ 0

0 0 0 µ


Therefore, applying the LLL algorithm to L, we obtain the reduced basis as indicated below

F =


5147099 144040944 96509008 420341551

−257153302 16734521888 7395698016 −7564654398

15083903031 13050364336 −11316744048 −2254846181

[21518106489 −12096919216 4561771888 2805288661


Next, we compute

U =


5147099 4513258 2195777 4217600

−257153302 −225486084 −109702826 −210714767

15083903031 13226391415 6434865027 12359946724

21518106489 18868253021 9179726932 17632216891


Then, from the first row of matrix U we get x = 5147099, y1 = 4513258, y2 = 2195777, y3 = 4217600. Hence

using x and yi for i = 1, 2, 3, we compute Bi = eix
2−zi
y2i

= φ(Ni) = pr−1
i qs−1

i (pi − 1)(qi − 1)

B1 = 30547462777355906537107003496719519167985793656882962389416996854536912002624277376

B2 = 19801671372470093366909090434439202641620354465206002672226396803270115691714512409368

B3 = 15494833653230354349448718374774008965839936447037583776577973671099483600783481340256

Applying Algorithm 2 gives Hi = gcd(φ(Ni), Ni) and pr−2
i = gcd(Ji, Hi), for i = 1, 2, 3

H1 = 1239145542055546707233585268210243938944942757051969

H2 = 103482342159537637329451716190645984353809893612268677

H3 = 114295667358418959302227796272660462134606070528374449

p1 = 50265440556693931519

p2 = 540792488541210887563

p3 = 843087436056575221669
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Finally, we compute qsi := Ni
pri

for i = 1, 2, 3, that is

q1 = 490437118529, q2 = 353838388333, q3 = 160799440409.

This leads to the simultaneous factorization of three moduli N1,N2 and N3 in polynomial time.

Theorem 2.4. Let Ni = pri q
s
i be ω multi prime power moduli 2 ≤ s < r, q < p < λq for λ > 2 and

Ji = pr−2
i qs−2

i (pi − 1)(qi − 1) be known integer where (ei, Ni) are ω public exponents and (xi, pi, qi, φ(Ni)) are

private keys for ei < φ(Ni) <

(
λ
r−s
2r

(
N
r+s
2r +N

r+s−2
2r

)
−N

r+s−1
2r

(
λ
r−s+1

2r + λ
r−s−1

2r

))
, with e = min{ei} = Nγ and

N = max{Ni} satisfying eix
2
i−y2(φ(Ni)) = zi . If xi, y < NΛ for Λ = (r+s)γω−rωξ

(r+s)(1+3ω)
such that eix

2
i−y2φ(Ni) = zi

holds, then prime factors pi and qi of ω prime power moduli Ni can be simultaneously factored in polynomial
time for i = 1, · · · , ω and 0 < γ, ω, ξ < 1.

Proof. Suppose Ni = pri q
s
i be ω multi prime power moduli and N = max{Ni},e = min{ei}, let W =

λ
r−s+1

2r
i N

r+s−1
2r

i + λ
r−s−1

2r
i N

r+s−1
2r

i if yi < NΛ, then eix
2
i − y2φ(Ni) = zi can be rewritten as

eix
2
i − y2(pr−1

i qs−1
i (pi − 1)(qi − 1)) = zi

eix
2
i − y2

(
λ
r−s
2r
i

(
N

r+s
2r
i +N

r+s−2
2r

i

)
−N

r+s−1
2r

i

(
λ
r−s+1

2r
i + λ

r−s−1
2r

i

))
= zi

eix
2
i − y2

(
λ
r−s
2r
i N

r+s
2r
i + λ

r−s
2r
i N

r+s−2
2r

i − λ
r−s+1

2r
i N

r+s−1
2r

i − λ
r−s−1

2r
i N

r+s−1
2r

i

)
= zi

eix
2
i − y2

(
λ
r−s
2r
i N

r+s
2r
i −Wi +Wi −

(
λ
r−s
2r
i N

r+s
2r
i − φ(Ni) + λ

r−s
2r
i N

r+s−2
2r

i

)
+ λ

r−s
2r
i N

r+s−2
2r

i

)
= zi

eix
2
i − y2

(
λ
r−s
2r
i N

r+s
2r
i −Wi + λ

r−s
2r
i N

r+s−2
2r

i

)
= zi + y2

(
Wi − λ

r−s
2r
i N

r+s
2r
i + φ(Ni)− λ

r−s
2r
i N

r+s−2
2r

i

)

∣∣∣∣∣∣λ
r−s
2r
i N

r+s
2r
i −Wi + λ

r−s
2r
i N

r+s−2
2r

i

ei
x2i − y2

∣∣∣∣∣∣ =

∣∣∣∣zi + y2i

(
Wi − λ

r−s
2r
i N

r+s
2r
i + φ(Ni)− λ

r−s
2r
i N

r+s−2
2r

i

)∣∣∣∣
ei

.

Suppose N = max{Ni}, e = min{ei} and yi < NΛ, for r, s > 0 with r > s and∣∣∣∣Wi − λ
r−s
2r
i N

r+s
2r
i + φ(Ni)− λ

r−s
2r
i N

r+s−2
2r

i

∣∣∣∣ < NΛ+ r
r+s

ξ for 0 < ξ,Λ < 1, zi < N
1
r
+α

∣∣∣∣∣∣∣∣
zi + y2i

(
Wi − λ

r−s
2r
i N

r+s
2r
i + φ(Ni)− λ

r−s
2r
i N

r+s−2
2r

i

)
ei

∣∣∣∣∣∣∣∣ ≤
∣∣∣∣∣∣
zi + y2i

(
NΛ+ r

r+s
ξ
)

ei

∣∣∣∣∣∣
<
N

1
r
+α +N2Λ

(
NΛ+ r

r+s
ξ
)

Nγ

< N
1
r
+α +N2Λ+Λ+ r

r+s
ξ−γ

<
1

r + α
N3Λ+ r

r+s
ξ−γ

This implies ∣∣∣∣∣∣λ
r−s
2r
i N

r+s
2r
i −Wi + λ

r−s
2r
i N

r+s−2
2r

i

ei
x2i − y2

∣∣∣∣∣∣ < 1

r + α
N3Λ+ r

r+s
ξ−γ .
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For the unknown integer positive integer x, we assume that ε = 1
r+α

N3Λ+ r
r+s

ξ−γ , with Λ = Λ = (r+s)γω−rωξ
(r+s)(1+3ω)

,
then

NΛεω =

(
1

r + α

)ω
N3Λ+ r

r+s
ξ−γ =

(
1

r + α

)ω
For

(
1

r+α

)ω
< 2

ω(ω−3)
4 · 3ω with ω ≥ 2, we get NΛεω < 2

ω(ω−3)
4 · 3ω. It follows that if y < NΛ then

y < 2
ω(ω−3)

4 · 3ω · ε−ω. Hence∣∣∣∣∣∣λ
r−s
2r
i N

r+s
2r
i −Wi + λ

r−s
2r
i N

r+s−2
2r

i

ei
x2i − y2

∣∣∣∣∣∣ < ε, y < 2
ω(ω−3)

4 · 3ω · ε−ω.

Using Theorem 1.2, we can obtain the unknown parameters x and yi. One can observe that from eix
2
i −

y2φ(Ni) = zi we get

φ(Ni) =
eix

2
i − zi
y2

gcd(φ(Ni), Ni) = Hi

pr−2
i = gcd(Ji, Hi)

qsj =
Ni
pri
.

Finally, the prime factors (pi, qi) of the prime power moduli Ni can be found simultaneously in polynomial time
for Ni for i = 1, . . . , ω.

Let

Ψ1 =
λ
r−s
2r

1 N
r+s
2r

1 −W1 + λ
r−s
2r

1 N
r+s−2

2r
1

e1
, Ψ2 =

λ
r−s
2r

2 N
r+s
2r

2 −W2 + λ
r−s
2r

2 N
r+s−2

2r
2

e2

Ψ3 =
λ
r−s
2r

3 N
r+s
2r

3 −W3 + λ
r−s
2r

3 N
r+s−2

2r
3

e3

Example 2.5. We consider the following three prime power and their three public exponents respectively

N1 = 634070324848957314669977678340286461664901470930238707620212520710783179710841906596021888899

N2 = 86131250307897498850501571058029873775065752373813078555352866785239909966116443043787627719467

N3 = 69118983900483202882740782464482801194280890635073678515559657391285501267128304826064497288441

e1 = 120944112149813860610949379638289758290206224608062926714879400676192029966094479013735464610

e2 = 17522471807140063046381287795838038606575676893295921580676061567572456840916828620252852895269

e3 = 45777674664456091785127993287675440474981487535946364047446307733021036942304011931711601122295

Also, let
J21 = 15843927462016570143700298963386472627716278493866758425776

J22 = 286045938486841534570405941599631591835243299469677171676284

J23 = 224020891530204425264055470874593258917156685795650965642192

Then, one can observe that

N = min{N1, N2, N3} = 6340703248489573146699776783402864616649014709302387076202125207

10783179710841906596021888899

and min{e1, e2, e3} = Nγ with γ = 0.32 and ω = 3 we get ε = 1
r+α

N3Λ+ r
r+s

ξ−γ = 0.06438580265 and Λ =
(r+s)γω−rωξ
(r+s)(1+3ω)

= −0.7989842078. Using Algorithm 3, we compute

X = [3ω+1 · 2
(ω+1)(ω−4)

4 · ε−ω−1] = 124190.
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Algorithm 3 Theorem 2.4

1: Initialization: The public key tuple (Ni, ei) and Ji satisfying Theorem 2.4.
2: Choose r, s, t ≥ 2, r > s and N = max{Ni} for i = 1, . . . , ω.
3: for any (N,ω,Λ) do

4: ε = 1
r+αN

3Λ+ r
r+s

ξ−γ , where Λ = (r+s)γω−rωξ
(r+s)(1+3ω)

5: X := [3ω+1 × 2
(ω+1)(ω−4)

4 × ε−ω−1] for ω ≥ 2.
6: end for
7: Consider the lattice L spanned by the matrix B as stated below.
8: Applying the LLL algorithm to L yields the reduced basis matrix M .
9: for any (B,M) do

10: Q := B−1

11: L = QM .
12: end for
13: Produce xi, y from L
14: for each triplet (xi, y, ei) do

15: φ(Ni) :=
eix

2
i−1

y2

16: Wi := gcd(φ(Ni), Ni)
17: pr−2

i := gcd(Ji,Wi)
18: qsi :=

Ni
pri

19: end for
20: return the prime factors (pi, qi).

Consider the lattice L spanned by the matrix

B =


1 −[XΨ1] −[XΨ2] −[XΨ3]

0 X 0 0

0 0 X 0

0 0 0 X


Therefore, applying the LLL algorithm to L, we obtain reduced basis as follows

M =


1467 −806 −461 −721

−3585 −570 −2175 −6365

1669 −3372 8703 −397

−3597 −11484 −3949 8371


Next, we compute

L =


1467 7691 7211 2215

−3585 −18795 −17622 −5413

1669 8750 8204 2520

−3597 −18858 −17681 −5431


From the first row of matrix L we obtain y = 1467, x1 = 7691, x2 = 7211, x3 = 2215. Hence using xi, y

and Algorithm 3, we compute Ai =
eix

2
i−zi
y

= φ(Ni) = pr−1
i qs−1

i (pi − 1)(qi − 1), Wi = gcd(φ(Ni), Ni) and
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pr−2
i = gcd(Ji,Wi), for i = 1, 2, 3.

A1 = 634070324842684663911937068028688841860924385453723223833767873620036061669551899971576944656

A2 = 86131250307625763208899431694470413355158286351436189855661267868960454178494377082269732193724

A3 = 69118983900320547582861966688616973859634625011670890501086279228794544531154319310583758076976

W1 = 15843927462173308946497316942727577937112905515329551500129

W2 = 286045938487743981433127567826012041245759491620222388161947

W3 = 224020891530731605833485052368563348924893790832304493779847

p1 = 395902516785354573188459

p2 = 949972032599552436175627

p3 = 726072013941642675577849

Finally, we compute qsi := Ni
pri

for i = 1, 2, 3 which gives

q1 = 101084908009, q2 = 316967070643, q3 = 424941480247.

This leads to the simultaneous factorization of three moduli N1,N2 and N3 in polynomial time.

3 Conclusion

For 2 ≤ s < r with q < p < λq and qs < pr < λqs, we suggested two polynomial attacks for cracking the
modulus of the form N = prqs, where p and q are unbalance prime numbers.

The first method used the method of continued fractions expansion to show that y2

x2
can be recovered among

the convergents of the continued fraction expansion
e(

λ
r−s
2r

(
N
r+s
2r +N

r+s−2
2r

)
−N

r+s−1
2r

(
λ
r−s+1

2r +λ
r−s−1

2r

)) , allowing us to factor in polynomial time the prime power

modulus N = prqs. The second method made use of j public keys (Ni, ei, J2i) where J2i = pr−2qs−2(pi−1)(qi−1)
when j relations of the form eix

2 − y2i φ(Ni) = zi and eix
2
i − y2φ(Ni) = zi exist, and the unknown parameters

x, xi, y, yi can be recovered concurrently using the LLL algorithm, which allows us to factor j prime power
moduli In polynomial time, Ni for i = 1, 2, 3.
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