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Abstract
Data-driven transformations that reformulate nonlinear systems in a linear framework have the
potential to enable the prediction, estimation, and control of strongly nonlinear dynamics using
linear systems theory. The Koopman operator has emerged as a principled linear embedding of
nonlinear dynamics, and its eigenfunctions establish intrinsic coordinates along which the
dynamics behave linearly. Previous studies have used finite-dimensional approximations of the
Koopman operator for model-predictive control approaches. In this work, we illustrate a
fundamental closure issue of this approach and argue that it is beneficial to first validate
eigenfunctions and then construct reduced-order models in these validated eigenfunctions. These
coordinates form a Koopman-invariant subspace by design and, thus, have improved predictive
power. We show then how the control can be formulated directly in these intrinsic coordinates and
discuss potential benefits and caveats of this perspective. The resulting control architecture is
termed Koopman Reduced Order Nonlinear Identification and Control (KRONIC). It is further
demonstrated that these eigenfunctions can be approximated with data-driven regression and
power series expansions, based on the partial differential equation governing the infinitesimal
generator of the Koopman operator. Validating discovered eigenfunctions is crucial and we show
that lightly damped eigenfunctions may be faithfully extracted from EDMD or an implicit
formulation. These lightly damped eigenfunctions are particularly relevant for control, as they
correspond to nearly conserved quantities that are associated with persistent dynamics, such as the
Hamiltonian. KRONIC is then demonstrated on a number of relevant examples, including (a) a
nonlinear system with a known linear embedding, (b) a variety of Hamiltonian systems, and (c) a
high-dimensional double-gyre model for ocean mixing.

1. Introduction

In contrast to linear systems, a generally applicable and scalable framework for the control of nonlinear
systems remains an engineering grand challenge. Improved nonlinear control has the potential to transform
our ability to interact with and manipulate complex systems across broad scientific, technological, and
industrial domains. From turbulence control to brain-machine interfaces, emerging technologies are
characterized by high-dimensional, strongly nonlinear, and multiscale phenomena that lack simple models
suitable for control design. This lack of simple equations motivates data-driven control methodologies,
which include system identification for model discovery [9, 16, 22, 72, 85]. Alternatively, one can seek
transformations that embed nonlinear dynamics in a global linear representation, as in the Koopman
framework [63, 79]. The goal of this work is to reformulate controlled nonlinear dynamics in a
Koopman-eigenfunction framework, referred to as Koopman Reduced Order Nonlinear Identification and
Control (KRONIC), that shows improved predictive power and is amenable to powerful linear optimal and
robust control techniques [36, 103, 106].
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Figure 1. Koopman embedding to linearize nonlinear dynamics.

A wide range of data-driven and nonlinear control approaches exist in the literature, including
model-free adaptive control [67], extremum-seeking [6], gain scheduling [97], feedback linearization [27],
describing functions [115], sliding mode control [37], singular perturbation [62], geometric control [17],
back-stepping [61], model predictive control [26, 78], reinforcement learning [110], and machine
learning control [21, 47]. Although considerable progress has been made in the control of nonlinear
systems [53, 67, 99], methods are generally tailored to a specific class of problems, require considerable
mathematical and computational resources, or do not readily generalize to new applications. Currently there
is no overarching framework for nonlinear control, that is generically applicable to a wide class of potentially
high-dimensional systems, as exists for linear systems [36, 103]. Generally applicable frameworks, such as
dynamic programming [15], Pontryagin’s maximum principle [91], and model-predictive control (MPC)
[2, 26], often suffer from the curse of dimensionality and require considerably computational effort, e.g.
solving adjoint equations, when applied to nonlinear systems, which can be mitigated to some degree by
combining these with low-dimensional, linear representations. Fortunately, the rise of big data, advances in
machine learning, and new approaches in dynamical systems are changing how we approach these
canonically challenging nonlinear control problems. For instance, recently deep reinforcement learning has
been combined with MPC [90, 120], yielding impressive results in the large-data limit.

Koopman operator theory has recently emerged as a leading framework to obtain linear representations
of nonlinear dynamical systems from data [79]. This operator-theoretic perspective complements the more
standard geometric [45] and probabilistic [34, 35] perspectives. The ability to embed nonlinear dynamics in
a linear framework (see figure 1) is particularly promising for the prediction, estimation, and control of
nonlinear systems. In 1931, Koopman showed that a nonlinear dynamical system may be represented by an
infinite-dimensional linear operator acting on the space of measurement functions of the state of the
system [63]. Formulating dynamics in terms of measurements is appealing in the era of big data. Since the
seminal work of Mezíc and Banaszuk [84] and Mezíc [79], Koopman theory has been the focus of efforts to
characterize nonlinear systems. Many classical results have been extended to the Koopman
formalism [25, 80]. For example, level sets of Koopman eigenfunctions form invariant partitions [24] and
may be used to analyze mixing. The Hartman–Grobman theorem has also been generalized to provide a
linearizing transform in the entire basin of attraction of a stable or unstable equilibrium or periodic
orbit [71].

Recently, Koopman theory has been applied for system identification [75, 81, 93, 116], estimation
[107, 108] and control [1, 20, 64, 105, 119] of nonlinear systems. The Koopman operator is
infinite-dimensional, and control laws are typically based on a finite-dimensional approximation. Dynamic
mode decomposition (DMD) [68, 96, 100, 114] approximates the Koopman operator with a best-fit linear
model. However, DMD is based on linear measurements, which do not span a Koopman invariant subspace
for many nonlinear systems [20, 68, 117]. Current data-driven methods to approximate the Koopman
operator include extended DMD (EDMD) [59, 117, 118] and the variational approach of conformation
dynamics (VAC) [86, 87]. EDMD was recently used for model predictive control with promising results [64].
However, EDMDmodels may suffer from closure issues for systems with multiple fixed points or attractors,
as a linear model only has a single fixed point [20], which may lead to corrupted dynamics [20, 68] and
emphasizes the importance of model validation. For instance, some eigenfunctions may be distorted when
projected onto a finite-dimensional measurement subspace, and it may be advantageous to construct a
reduced-order description from validated eigenfunctions, that exhibit behavior as predicted by their
associated eigenvalue. For chaotic systems, delay coordinates provides a promising embedding [5, 19, 109].
Obtaining useful data-driven coordinate transformations that approximate Koopman eigenfunctions
remains an open challenge in data-driven dynamical systems [20, 68].
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Figure 2. Control of nonlinear systems via reduced Koopman-invariant representations in eigenfunction coordinates.

In the present work, we build on the existing EDMD and reformulate the Koopman-based control
problem in eigenfunction coordinates and provide strategies to identify lightly damped eigenfunctions from
data, that can be subsequently used for control. In particular:

• Koopman eigenfunctions provide a principled linear embedding of nonlinear dynamics resulting in an
intrinsic coordinate system, in which the system is closed under the action of the Koopman operator. We
formulate the incorporation of control in these intrinsic coordinates and discuss benefits and caveats of this
approach. Further, Koopman eigenfunctions can be associated with geometric system properties and coher-
ent structures. Thus, the designed controller may be employed tomanipulate particular coherent structures.
For example, the Hamiltonian energy is a Koopman eigenfunction, and we are able to control the system by
manipulating this function.

• Smooth eigenfunctions in the point spectrum of the Koopman operator can be discovered from given data
using sparse regression providing interpretable representations. We propose sparsity-promoting algorithms
to regularize EDMD or to discover eigenfunctions directly in an implicit formulation.

• We further demonstrate the importance of model validation to distinguish accurately identified eigenfunc-
tions from spurious ones. Lightly damped eigenfunctions are often not corrupted and can be used to con-
struct reduced-order Koopman models.

These nonlinear control techniques generalize to any lightly damped eigenfunction. As a more
sophisticated example, we consider the double gyre flow, which is a model for ocean mixing. The discovery
of intrinsic coordinates for optimized nonlinear control establishes our data-driven KRONIC framework3,
shown in figure 2.

The present work is outlined as follows: in section 2, we demonstrate the importance of eigenfunction
validation and motivate the use of sparse regression for their discovery. In section 3, key results in Koopman
spectral theory and corresponding data-driven approaches are summarized, and a brief background on
optimal control is provided. The approach for identifying of Koopman eigenfunctions from data using sparse
regression is outlined in section 5. In section 4, it is shown how control can be incorporated in the
eigenfunction formulation. An analytical example is examined in section 6 to illustrate the control problem
in terms of Koopman eigenfunction coordinates. The KRONIC framework is then demonstrated on several
Hamiltonian systems (section 7), for basin-hopping in an asymmetric double potential well (section 8), and
the autonomous and non-autonomous double gyre flow (section 9). A discussion and outlook on future
directions is provided in section 10.

2. Motivation

Finite-dimensional approximations of the Koopman operator are typically obtained as its projection onto a
specified basis or dictionary. EDMD [116] has emerged as the leading numerical approach by solving a
least-squares problem. A well-known issue arises when trying to identify the full operator in a finite set of
basis functions, that sometimes the finite-dimensional approximation is not closed and spurious
eigenfunctions may appear. For this reason, it can be important to perform consistency checks, such as
validating the linearity property of eigenfunctions. The present work builds on EDMD addressing this
limitation by re-formulating the regression problem for the direct identification of Koopman eigenfunctions.
Further, we demonstrate how EDMDmay be regularized to obtain more accurate eigenfunction
representations. In the following, we illustrate the closure problem using a polynomial basis. As a motivating
example (examined in detail in section 6), we consider a system with quadratic nonlinearity that gives rise to

3 Code at https://github.com/eurika-kaiser/KRONIC.
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Figure 3. EDMDmodels give rise to inaccurate eigenvectors, demonstrated for the slow manifold system: (a) EDMD regression
model on up to third degree monomials, (b) fitting onto higher-degree monomials, (c) evolution of eigenvectors identified from
the model in (a), which are evaluated on a single test trajectory, and as predicted using the corresponding eigenvalue.

a slow manifold [114]:

d

dt

[
x1
x2

]
=

[
µx1

λ(x2 − x21)

]
(1)

with µ=−0.1 and λ=−1. By a clever choice of observable functions y, the nonlinear system (1) may be
represented as a linear system:

d

dt
y= Ky, (2)

where K represents a finite-dimensional approximation of the Koopman operator. The system (1) is one of
few analytical examples, for which a closed, finite-dimensional, linear Koopman approximation exists.

The EDMDmodel fit on the first nine monomials (up to third degree) is shown in figure 3(a). Some of
the eigenvectors are spurious (see figure 3(c)), i.e. the evolution of the eigenfunction φ(x(t)) obtained by
evaluating the eigenfunction on a trajectory x(t) does not correspond to the linear prediction using the
eigenvalue, eλtφ(x(t0)). The reason is that the model is not closed in the particular choice of basis functions,
because the derivatives of third degree monomials give rise to higher-degree monomials (see figure 3(b))
resulting in a nonlinear model:

d

dt



y1
y2
y3
y4
y5
y6
y7
y8
y9


=



µ 0 0 0 0 0 0 0 0
0 λ −λ 0 0 0 0 0 0
0 0 2µ 0 0 0 0 0 0
0 0 0 µ+λ −λ 0 0 0 0
0 0 0 0 2λ 0 −2λ 0 0
0 0 0 0 0 3µ 0 0 0
0 0 0 0 0 0 λ+ 2µ 0 0
0 0 0 0 0 0 0 2λ+µ 0
0 0 0 0 0 0 0 0 3λ





y1
y2
y3
y4
y5
y6
y7
y8
y9


+



0
0
0
0
0
0

−λx41
−2λx31x2
−3λx21x

2
2


, (3)

where (y1,y2,y3,y4,y5,y6,y7,y8,y9) = (x1,x2,x21,x1x2,x
2
2,x

3
1,x

2
1x2,x1x

2
2,x

3
3). These additional terms, that are

not in the span of {y1, . . . ,y9}, will be aliased in the corresponding row equations corrupting the system
matrix K. Thus, some of the eigenfunctions will be spurious, affecting the prediction accuracy of the model
based on K. However, it may be possible to identify a subset of the eigenfunctions that are not corrupted, e.g.
those eigenpairs that show good agreement in figure 3(c), and use these to construct a reduced-order model
with improved prediction. Alternatively, EDMDmay be regularized using sparsity-promoting techniques to
regress a (approximate) closed model on a subset of basis functions. For instance, choosing the five
observable functions (y1,y2,y3,y4,y5) = (x1,x2,x21,x1x2,x

3
1), which are a subset of the nine monomials used

above, yields:

d

dt


y1
y2
y3
y4
y5

=


µ 0 0 0 0
0 λ −λ 0 0
0 0 2µ 0 0
0 0 0 µ+λ −λ
0 0 0 0 3µ



y1
y2
y3
y4
y5

 , (4)
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Figure 4. Sparsified EDMDmodels increase robustness and prevent overfitting on noisy data: (a) EDMDmodel, (b) validation of
eigenpairs, and (c) phase plot with L2 error for different models. For details see figure 3 and text.

which is a 5-dim. linear system, that remains closed under the action of the Koopman operator.
Measurements from real-world systems are generally corrupted by noise, which can be more challenging

for model identification procedures. Figure 4(c) shows the poor prediction performance of the EDMD
model trained on noisy data (displayed in figure 4(a)). More eigenfunctions are inaccurate as a result of an
increasing number of non-vanishing coefficients in the state matrix compared with the noise-free situation
in figure 3. The least-squares solution overfits resulting in a full matrix with small, but non-vanishing
coefficients. By sparsifying the EDMD state matrix or constructing a reduced-order model based on accurate
eigenfunctions (validated from figure 4(b)) higher prediction accuracy and robustness to noise can be
achieved (compare models in figure 4(c)). Ideally, it would be possible to learn good eigenfunctions directly,
which are designed to behave linearly and evolve as predicted by their associated eigenvalue, which would
potentially significantly increase prediction accuracy and reduce the dimension of the model.

3. Background

In this section, we provide a brief background on Koopman spectral theory in section 3.1 and a numerical
algorithm, dynamic mode decomposition, to approximate the Koopman operator in section 3.2. Key results
in optimal control are then summarized in section 3.3.

3.1. Koopman spectral theory
The classical geometric theory of dynamical systems considers a set of coupled ordinary differential
equations

d

dt
x(t) = f(x) (5)

in terms of the state of the system x ∈M, whereM is a differentiable manifold, often given byM= Rn. In
discrete time, the dynamics are given by

xk+1 = F(xk), (6)

where Fmay be the flow map of the dynamics in (5):

F(x(t0)) = x(t0)+

ˆ t0+t

t0

f(x(τ))dτ. (7)

Discrete-time systems are more general and form a superset, containing those induced by continuous-time
dynamics. Moreover, discrete-time dynamics are often more consistent with experimental measurements,
and may be preferred for numerical analysis. The geometric perspective then considers fixed points and
invariant structures of the dynamics.

In 1931, Koopman introduced the operator theoretic perspective, showing that there exists an
infinite-dimensional linear operator, given by K, that acts to advance all measurement functions g :M→ R
of the state with the flow of the dynamics:

Kg= g ◦ F. (8)

Thus, the Koopman operator advances measurements linearly:

g(xk+1) = Kg(xk). (9)

5
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For smooth dynamics, there is a continuous system

d

dt
g(x) =Kg(x) =∇g(x) · f(x), (10)

where K is the infinitesimal generator of the one-parameter family of Koopman operators K.
The Koopman operator is linear, which is appealing, but is infinite dimensional, posing issues for

representation and computation. Instead of capturing the evolution of all measurement functions in a
Hilbert space, applied Koopman analysis approximates the evolution on a subspace spanned by a finite set of
measurement functions. It is possible to obtain a finite-dimensional matrix representation of the Koopman
operator by restricting it to an invariant subspace. A Koopman invariant subspace is spanned by any set of
eigenfunctions of the Koopman operator. A Koopman eigenfunction φ(x) corresponding to eigenvalue λ
satisfies

λφ(x) = φ(F(x)). (11)

In continuous-time, a Koopman eigenfunction φ(x) :M→ C satisfies

d

dt
φ(x) = λφ(x). (12)

Obtaining Koopman eigenfunctions from data or analytically is a central applied challenge in modern
dynamical systems. Discovering these eigenfunctions enables globally linear representations of strongly
nonlinear systems in terms of these intrinsic observables. The evolution equation (12) describes the
unactuated behavior, which will be extended to incorporate the effect of control in our KRONIC framework
(compare the third box in figure 2 and for further details we refer to sections 4 and 5).

3.2. Dynamic mode decomposition
Dynamic mode decomposition (DMD) is a simple numerical algorithm that approximates the Koopman
operator with a best-fit linear model that advances measurements from one time step to the next
[68, 96, 100, 114]. DMD was originally introduced in the fluid dynamics community [8, 21, 43, 80, 100, 101]
to decompose large data sets into dominant spatial-temporal coherent structures, and a connection with
Koopman theory was soon established [96]. In addition to fluid dynamics, DMD has been widely applied to a
range of problems in neuroscience [18], robotics [14], epidemiology [94], and video processing [40, 44, 70].
The DMD algorithm has also been extended to include sparsity and compressed sensing [23, 40, 46, 55, 113],
actuation and control [92], multi-resolution analysis [69], de-noising [33, 50], and streaming variants [51].

In DMD, the infinite-dimensional Koopman operator in (9) is approximated with a finite-dimensional
matrix A that advances the system state x:

xk+1 ≈ Axk. (13)

Given data from a nonlinear system in (6), it is possible to stack snapshots into a matrix
X= [x1 x2 . . . xm−1] and a time-shifted matrix X ′ = [x2 x3 . . . xm]. In terms of these data matrices, (13)
becomes

X ′ ≈ AX. (14)

Various DMD algorithms then compute the leading eigendecomposition of the best-fit linear operator A,
given by

A= arg min
Ã

||X ′ − ÃX||F, (15)

where ∥ · ∥F is the Frobenius norm. The best-fit A is given by A= X ′X†, where † is the pseudo-inverse, which
is computed via singular value decomposition.

DMD has proven to be an extremely useful technique for the analysis of high-dimensional dynamical
systems data. However, DMD is based on linear measurements of the system, which do not typically span a
Koopman-invariant subspace of a general nonlinear system. For example, a linear DMDmodel may perfectly
capture the periodic attractor dynamics of a system on a limit cycle, but will fail to capture the nonlinear
transients if the system is perturbed off the attractor. DMD has since been augmented with nonlinear
measurements to enrich the model in EDMD [59, 117, 118] and VAC [86, 87]. EDMDmodels have been

6
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used with success for estimation [107, 108] and model predictive control [64]. However, EDMDmodels are
based on a large set of nonlinear measurements of the state, and there is no guarantee that these
measurements form a Koopman invariant subspace. In fact, EDMDmeasurement subspaces will generally
not be closed [20, 68]. For example, there is no finite-dimensional Koopman invariant subspace that includes
the state of the system x for any dynamical system that has multiple attractors (e.g. fixed points, periodic
orbits, etc), since the resulting finite-dimensional linear model cannot be topologically conjugate to the
original dynamics. This is closely related to the representation of the Koopman operator in a polynomial
basis, similar to Carleman linearization [10, 66, 111]. Thus, EDMD as well as other models are often plagued
with spurious eigenfunctions that do not behave linearly as predicted by the associated eigenvalue.
Fortunately, although these models may have corrupted eigenvalues and eigenfunctions, eigenfunctions
corresponding to lightly damped eigenvalues may be faithfully extracted.

3.3. Optimal control
The overarching goal of Koopman control is to reformulate strongly nonlinear dynamics in a linear
framework to enable the use of powerful optimal and robust control techniques available for linear
systems [36, 103, 106]. Here, we summarize key results in optimal control theory that will be used for control
in Koopman eigenfunction coordinates. We consider the nonlinear system (5) affected by an external input

d

dt
x(t) = f(x,u), x(0) = x0 (16)

with multi-channel control input u ∈ Rq and continuously differentiable dynamics f(x,u) : Rn ×Rq → Rn.
Without loss of generality, the origin is an equilibrium: f(0,0) = 0.

Infinite-horizon optimal control minimizes the following quadratic cost functional

J(x,u) =
1

2

∞̂

0

xT(t)Qx(t)+ uT(t)Ru(t)︸ ︷︷ ︸
L(x,u)

dt (17)

with state and input weight matrices Q ∈ Rn×n and R ∈ Rq×q. Both matrices are symmetric and fulfill Q> 0
and R⩾ 0. A full-state feedback control law

u(x) =−C(x)x= c(x), c(0) = 0 (18)

with gain C : Rn → Rq×n is sought that minimizes the cost function (17) subject to the state dynamics (16)
to drive the system to the origin, i.e. lim

t→∞
x(t) = 0,∀x.

4. Koopman operator control in eigenfunctions

We now propose a general control architecture in Koopman eigenfunction coordinates, referred to as
KRONIC (see figure 2). This eigenfunction perspective relies on a model constructed from validated
Koopman eigenfunctions, which is closed and linear by design. First, we derive how the effect of actuation
affects the dynamics of these eigenfunction coordinates. Second, the optimal control problem is formulated
in these coordinates and a corresponding feedback controller is then developed, yielding a possibly nonlinear
control law in the original state variables. Control in eigenfunction coordinates is quite general,
encompassing the stabilization of fixed points and periodic orbits, e.g. via the Hamiltonian eigenfunction, or
the manipulation of more general spatial-temporal coherent structures given by level sets of other
eigenfunctions.

4.1. Control–affine systems
We first examine how adding control to a dynamical system (5) affects a single Koopman eigenfunction. This
formulation then readily generalizes to multiple eigenfunctions. Consider a control-affine system

d

dt
x(t) = f(x)+

q∑
i=1

bi(x)ui, (19)

with a multi-channel input u ∈ Rq, continuously differentiable dynamics f(x) : Rn → Rn associated with the
unforced dynamics, and each bi(x) is a vector field acting on the state space.

7
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Starting with the Koopman operator associated with the uncontrolled, autonomous system (see
section 3.1), we examine how the control terms in (19) affect the dynamics of its eigenfunctions. By applying
the chain rule, we obtain

d

dt
φ(x) =∇φ(x) ·

(
f(x)+

q∑
i=1

bi(x)ui

)
(20a)

= λφ(x)+∇φ(x) ·
q∑

i=1

bi(x)ui. (20b)

This equation differs from equation (12) in the additional second term associated with the control terms.
The φ(x) is a Koopman eigenfunction associated with the autonomous Koopman operator for the unforced
dynamics f(x). For instance, a Hilbert space of the Lebesque square-integrable functions may be considered
as function space. The control enters the dynamics of φ via the additional term leading to a control-affine
system, which is linear in φ and possibly nonlinear in the control.

Without loss of generality, we assume in the examples presented in later sections a linear control term:

d

dt
x(t) = f(x)+Bu, (21)

with control matrix B ∈ Rn×q, so that the dynamics of the eigenfunctions become

d

dt
φ(x) = λφ(x)+∇φ(x) ·Bu. (22a)

4.2. Nonaffine control systems
More generally, we may be interested in the control of a nonlinear, non-affine system:

d

dt
x(t) = f(x,u), (23)

with continuously differentiable dynamics f(x,u) : Rn ×Rq → Rn. We may now consider an observable
g(x,u) as a function of the extended state spaceM×U , where x ∈M and u ∈ U , and the non-autonomous
Koopman operator acting on these observables. For discrete-time dynamics with discrete map F(x,u), the
Koopman operator propagates scalar measurements according to Kg(xk,uk) = g(F(xk,uk),uk+1) by
assuming the Koopman operator acts on the extended state space in the same manner as the Koopman
operator associated with the autonomous, unforced system. This assumption has been previously [64]
considered, where the extended space was defined as the product of the original state-space and the space of
all control sequences. Since the first appearance of this article, they have been further studies [4, 56, 93]
examining the approximation of the Koopman operator for the non-affine control system. In [93], it is in
more detail discussed how the Koopman operator formulation can be modified based on the dynamics of u
itself, e.g. open-loop versus closed-loop control. As associated function space, in which observables are
defined on the extended state space, a Hilbert space of the Lebesque square-integrable functions or
polynomial functions defined on a compact set may be considered. If the dynamics on u are governed by a
specific feedback law of the form u= C(x), that is only a function of the state x, then choices about the
function space for the controlled system are equivalent to those applying to the autonomous system.

For smooth dynamics (23), the continuous-time dynamics are given by

d

dt
g(x,u) =Kg(x,u). (24)

An associated Koopman eigenfunction φ(x,u) satisfies

d

dt
φ(x,u) = λφ(x,u). (25)

Applying the chain rule, we find that the dynamics of the Koopman eigenfunction depends on u̇, which is
generally arbitrary: d

dtφ(x,u) =∇xφ(x,u) · f(x,u)+∇uφ(x,u) · u̇. Instead, we may specify that φ(x,u)
reduces to the eigenfunction φ(x, ū) of ẋ= f(x, ū) for all locked ū ∈ U , as in [93]. In this case, the
eigenfunction is parametrized by the input ū :

∇xφ(x, ū) · f(x, ū) = λφ(x, ū), ∀ ū ∈ U . (26)

8



Mach. Learn.: Sci. Technol. 2 (2021) 035023 E Kaiser et al

These are eigenfunctions of the parametrized Koopman generator, which is autonomous for each locked ū
and can be defined on the commonly used function spaces as stated above. This perspective is also assumed
within the gEDMD framework and its extension for control [60]. The Koopman generator K is
approximated as a finite-rank matrix K parametrized by the discrete control input using EDMD. The control
problem is then solved by optimizing switching times among the finite set of discrete control inputs and
associated models.

If we augment the eigenfunction vector with the input u, we obtain

d

dt
φ(x,u) = λφ(x,u)+∇uφ(x,u) · u̇, (27)

where we view u̇ as the input to the Koopman linear system, and the∇uφ(x,u)matrix varies based on x and
u. Thus, we may enact a gain-scheduled control law.

Summarizing, if the original dynamics are nonlinear and control-affine, the dynamics in Koopman
eigenfunction coordinates are control-affine and split into a linear part associated with the nonlinear
unforced dynamics and a bilinear part associated with the control term. If the original dynamics are
nonlinear and non-affine in the control, the eigenfunction dynamics can become linear if the Koopman
operator is defined on the extended state. Considering practical implications, it is also possible to modify
these dynamics so that these consist of a linear part and a bilinear control term as in equation (27). We also
point out, that while the control is generally nonlinear in the state x, it may become linear in the
eigenfunction coordinates for special cases, such as∇φ(x) = const.

4.3. Formulation of the optimal control problem
We now formulate the infinite-horizon, optimal control problem [106] for a reduced set of Koopman
eigenfunctions. The control objective is a quadratic cost functional:

J(φ,u) =
1

2

∞̂

0

φT(x(t))Qφφ(x(t))+ u
T(t)Ru(t)dt, (28)

where φ= [φ1φ2 . . . φr]
T comprises r eigenfunctions with φj associated with eigenvalue λj. For this cost

function to be equivalent to the cost in the original state x, a modified weight matrix may be considered such
that φTQφφ≈ xTQx. This can only be achieved exactly if the state itself is an eigenfunction of the Koopman
operator; however, it can be sufficient requiring this only for a subset of states that enter the cost function.
Alternatively, it is possible to estimate x via the inverse mapping φ− 1. Eigenfunctions may generally not be
invertible exactly. Nevertheless, the inverse mapping may be approximated using multidimensional scaling as
in [57] or learned jointly with φ itself using autoencoders [73]. More generally, the matrix Qφ allows one to
weight particular eigenfunction directions, which are related to properties of the underlying system and
coherent structures. The selection of a specific set of eigenfunctions, in which a model is constructed and
which are used to formulate the cost functional, is problem specific. However, given a target state xREF in the
original state space, the associated target value of the eigenfunctions may be directly determined by
evaluating the eigenfunctions on the target state, i.e. φREF :=φ(xREF).

For the general case, it is possible to augment the state with the control input and include the derivative
of the control as new input û := u̇:

d

dt

[
φ
u

]
=

[
Λ Bφ
0 0

][
φ
u

]
+

[
0
Iq

]
û (29)

with q× q identity matrix Iq. This may be interpreted as integral control. The cost functional is then given by

J=
1

2

∞̂

0

[
φT uT

][Qφ 0
0 R

][
φ
u

]
+ ûTR̂ûdt. (30)

with some restrictions on R̂. Modifying the system structure, by moving the nonlinearity in the control term
into the state dynamics, improves the tractability of the problem [11].

In the following, we will focus on multiple-input, control-affine systems (21), for which the dynamics in
intrinsic coordinates becomes

d

dt
φ(x) =Λφ(x)+∇xφ(x) ·Bu (31)

9
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withΛ= diag(λ1, . . . ,λr). Depending on the structure ofφ(x) and B, the actuation matrix Bφ =∇xφ(x) ·B
may be a function of x. A state-dependent control term may be interpreted as a gain-scheduled control. A
feedback controller is now sought in the Koopman representation of the form

u=−cφ[φ(x)] =−Cφ(x)φ(x). (32)

We may also consider reference tracking, u=−Cφ(x)
[
φ(x)−φREF

]
, with a modified cost functional (28).

The objective is then to determine the gain function Cφ by minimizing J(φ,u) and the resulting control u
may be directly applied to the original system (21), for which the control problem may be suboptimal.
Generally, Koopman eigenfunction control can be used in two ways depending on which means of control
one has access to: (a) internally driven swimmers or particles, which state is given by x and which dynamics
are subject to an external field, such as a fluid flow or magnetic field; or (b) driving an external field,
represented in terms of these eigenfunctions, in which these swimmers or particles drift.

4.4. Solving the optimal control problem
The model (31) may be combined with any model-based control strategy. In the following, we discuss ways
to solve the optimal control problem formulated above using standard techniques.

In the simplest case, for which equation (31) becomes fully linear, the optimal gain matrix Cφ can be
determined by solving the associated algebraic Riccati equation leading to a linear quadratic regulator (LQR)
formulated in Koopman eigenfunctions. For the more general case, where the control term becomes
nonlinear, other techniques are required. A common extension of LQR for nonlinear systems considers
state-dependent state and control matrices as outlined in section A.3 and solves the state-dependent Riccati
equation (A9). Here, the state dynamics would be constant and linear, i.e. A=Λ, and only the control
matrix Bφ :=∇xφ ·B depends on the state x:

Q+PΛ+ΛTP−PBφ(x)R−1BTφ(x)P= 0. (33)

We note that parametrizations for the dynamics (A8) in x are unique for scalar systems, but generally
nonunique for multivariable systems [30]. In contrast, the state-dependent dynamics in eigenfunction
coordinates (31) are unique with respect to x andΛ is constant. These are not a result from the factorization.
The (non)uniqueness of the factorization is generally related to global optimal control and global optimal
stability. However, further studies are required to connect these properties for solutions in eigenfunction
coordinates to the state dynamics in x.

We examine the effect of an error εψ(x) in the representation of a Koopman eigenfunction,
φ̂(x) := φ(x)+ εψ(x), on its closed-loop dynamics based on (33) and provide an upper bound for the error
(for details see appendix B). We assume control-affine dynamics (21) of the underlying system, access to
full-state measurements x, and control vector fields are known. Further, we reformulate
B(x)u :=

∑q
i=1bi(x)ui for simplicity. The closed-loop dynamics of φ(x) are then given by

φ̇(x) =−
√
λ2 +QC(x)R−1CT(x)φ(x) =−√

µφ(x), (34)

where µ := λ2 +QC(x)R−1CT(x). The upper bound for the error in µ due to the misrepresentation of φ(x)
due to εψ(x) is

|µ− µ̂|⩽
∣∣∣− ε

(
QCR−1DT +QDR−1CT + 2λ

∇ψ · f
φ(x)

)
− ε2

(
QDR−1DT +

(∇ψ · f)2

φ2(x)

)∣∣∣. (35)

where C(x) :=∇φ(x) ·B(x) and D(x) :=∇ψ(x) ·B(x) are the control terms associated with φ(x) and ψ(x),
respectively. For small φ(x) the contribution of εψ(x) becomes important/may be dominant.

More generally, Koopman control in eigenfunction coordinates may be combined with any model-based
control approach. Under certain conditions, it may also be possible to feedback linearize the dynamics [58].
The data-driven identification of Koopman eigenfunctions can be challenging and they may only be
approximated accurately in a certain domain. Further, dynamics may also drift away from the situations
captured in the training data due to external disturbances. Especially in these cases it is advantageous to
couple the resulting model with a receding horizon estimator and controller to adapt quickly to changing
conditions. In particular, model predictive control has gained increasing popularity over the last decade due
to its success in a wide range of applications and its ability to incorporate customized cost functions and
constraints [3, 26, 39].
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Figure 5. Identification of Koopman eigenfunctions from data using implicit-SINDy.

5. Identifying Koopman eigenfunctions from data

The overarching goal of this work is to control nonlinear systems in intrinsic Koopman eigenfunction
coordinates. A leading method for approximating the Koopman operator is EDMD relying on a set of basis
or dictionary functions. Here, we aim to address the well-known closure issue, i.e. the model may not be
closed in the set of basis functions and can therefore have spurious eigenfunctions, by assuming an
eigenfunction perspective. Approximating these eigenfunctions from data is an ongoing challenge. Building
on EDMD, we propose a strategy to directly identify dominant Koopman eigenfunctions associated with
lightly damped eigenvalues, that can then be utilized to construct low-dimensional, closed models. Further,
we show that it is possible to sparsify the state-transition matrix K of EDMD to improve the representation
of eigenfunctions within the selected basis.

It has long been recognized that numerical regularization via the truncation of the SVD in the
computation of the pseudoinverse, as it is done for DMD/EDMD, is crucial to reduce noise corruption.
However, this does not produce a sparser approximation of K, which is crucial for systems that are inherently
sparse in their representation. An additional L1 regularization is here advantageous as it is able to improve
the predictive power of the model and eigenfunctions become more accurately represented in the chosen
function library preventing overfitting. Interestingly, the infinitesimal generator of the Koopman operator
may be sparse even when the Koopman operator itself is not [60]. However, even in these cases, the approach
may benefit from a sparsity constraint to counteract spurious non-zero entries arising from noise and
numerical approximation. More generally, non-compactness or continuous spectra of the Koopman
operator can pose issues for the numerical analysis requiring some form of regularization (see [42] for a
detailed discussion for the Koopman operator and [41] regarding the Perron-Frobenius operator).

In the following we formulate a framework using sparsity-promoting techniques to identify Koopman
eigenfunctions directly building on the partial differential equation (PDE) governing the evolution of an
eigenfunction. Applying the chain rule to (12) yields

d

dt
φ(x) =∇φ(x) · ẋ=∇φ(x) · f(x). (36)

Combined with (12), this results in a linear PDE for the eigenfunction φ(x):

∇φ(x) · f(x) = λφ(x). (37)

This formulation assumes continuous and differentiable dynamics and that the eigenfunctions are
smooth [83].

Spectral properties of the Koopman operator have been shown to relate to intrinsic time scales,
geometrical properties, and the long-term behavior of dynamical systems [68, 76, 79, 84]. It has been
shown [82], that the evolution of observables can be described by a linear expansion in Koopman
eigenfunctions for systems which consist only of the point spectrum, i.e. smooth dynamical systems
exhibiting, e.g. hyperbolic fixed points, limit cycles and tori. If systems with a mixed spectrum are
considered, it may be possible to restrict the following analysis to the point spectrum as in [32].

5.1. Data-driven discovery of continuous-time eigenfunctions
Sparse identification of nonlinear dynamics (SINDy) [22] is used to identify Koopman eigenfunctions for a
particular value of λ. This formalism assumes that the system has a point or mixed spectrum, for which
eigenfunctions with distinct eigenvalues exist. A schematic is displayed in figure 5.
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Algorithm 1. Direct discovery of eigenfunctions based on the implicit formulation (42).

1: Initialize:Λguess = eigs(Θ(X)†Γ(X, Ẋ))}
2: for each eigenvalue λi inΛguessdo
3: Initialize: λ= λ

guess
i

4: whileλ not converged do
5: M := Γ(X, Ẋ)−λΘ(X)
6: N := null(M)
7: for each row l in Ndo
8: q0 := (N(l, :)/norm(N(l, :)))T

9: qmtx(:, l) := adm(N,q0, α, MaxIter, tolerance);
10: Ξ(:, l) = Nqmtx(:, l)
11: end for
12: for each column l inΞdo
13: Ξ(:, l) := soft_thresholding(Ξ(:, l),α)
14: Ξ(:, l) := normalize(Ξ(:, l))

15: Error(l) := norm(Θ(Xtest)Ξ(:, l)− eλt
test

Θ(xtest0 )Ξ(:, l))
16: end for
17: best :=min(Error)
18: ξ :=Ξ(:,best)
19: Update λ := (ξTΘ(X)†Γ(X, Ẋ)ξ)/(ξTξ)
20: end while
21: T(:,i)= ξ
22: Λ(i, i) = λ
23: end for
24: returnΛ, T

First, we build a library of candidate functions:

Θ(x) =
[
θ1(x) θ2(x) · · · θp(x)

]
. (38)

We chooseΘ large enough so that the Koopman eigenfunction may be well approximated in this library:

φ(x)≈
p∑

k=1

θk(x)ξk =Θ(x)ξ. (39)

Given data X= [x1 x2 · · · xm], the time derivative Ẋ= [ẋ1 ẋ2 · · · ẋm] can be approximated numerically from
x(t) if not measured directly [22]. The total variation derivative [28] is recommended for noise-corrupted
measurements. It is then possible to build a data matrixΘ(X):

Θ(X) =
[
θ1(XT) θ2(XT) · · · θp(XT)

]
. (40)

Moreover, we can define a library of directional derivatives, representing the possible terms in∇φ(x) · f(x)
from (37): Γ(x, ẋ) = [∇θ1(x) · ẋ∇θ2(x) · ẋ · · · ∇θp(x) · ẋ]. It is then possible to construct Γ from data:

Γ(X, Ẋ) =
[
∇θ1(XT) · Ẋ ∇θ2(XT) · Ẋ · · · ∇θp(XT) · Ẋ

]
. (41)

For a specific eigenvalue λ, the Koopman PDE in (37) may be evaluated on data, yielding(
λΘ(X)−Γ(X, Ẋ)

)
ξ = 0. (42)

The formulation in (42) is implicit, so that ξ will be in the null-space of the matrix λΘ(X)−Γ(X, Ẋ).
The right null-space of (42) for a given λ is spanned by the right singular vectors of
λΘ(X)−Γ(X, Ẋ) = UΣV∗ (i.e. columns of V) corresponding to zero-valued singular values. It is possible to
identify the few active terms in an eigenfunction by finding the sparsest vector in the null-space [95], which
is used, e.g. in the implicit-SINDy algorithm [74]. This is a nonconvex approach based on alternating
directions (adm) with linear scaling [95], which can be adapted to our problem. In this formulation, the
eigenvalues λ are not known a priori, and must be learned online along with the approximate eigenfunction.
In algorithm 1, we propose an implicit formulation, which starts with an initial guess of the eigenvalues given
by the least-squares solution, and subsequently alternates between an searching for the sparsest vector in the
null-space [95] and updating of the eigenvalue. As the approach in [95] depends on the initial condition, we
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evaluate all initial conditions given by each row in the nullspace N := null(Γ(X, Ẋ)−λΘ(X)). An additional
soft-thresholding with parameter α and validation on a test dataset is applied to select the best eigenvector
for each initial condition. While the approach has been observed to converge to accurate eigenvalues in clean
data, the found eigenvector in the solution set may not be unique. This approach solves for each eigenpair
separately; however, it may also be possible to extend it to solve for eigenpairs jointly which is part of ongoing
research. From a practical standpoint, data in X does not need to be sampled from full trajectories, but can
be obtained using more sophisticated strategies such as latin hypercube sampling or sampling from a
distribution over the phase space. It may also be possible to directly identify a recursion relationship to
obtain a power series expansion as shown in appendix C and in [77].

Koopman eigenfuntions and eigenvalues can also be determined as the solution to the eigenvalue
problem ξαK= λαξα, where K=Θ†Γ is obtained via least-squares (LS) regression. While many
eigenfunctions are spurious, i.e. these eigenfunctions do not behave linearly as predicted by the
corresponding eigenvalue, those corresponding to lightly damped eigenvalues can be well
approximated [20, 68], and a reduced-order Koopman model may developed on these coordinates (see also
section 2). The accuracy of eigenfunctions of K can be improved, by improving the recovery of K itself,
which can be achieved by sparsifying K directly. The minimization problem

min
ki

||∇θi(XT) · Ẋ−Θ(X)kTi ||22 + ρ(ki), ∀ki, i= 1, . . . ,p, (43)

where ρ is a regularization term that promotes the sparsity of ki, i.e. the number of non-zero coefficients, is
solved separately for each row in K= [kT1 , . . . ,k

T
p ]. For instance, an L1 constraint on the coefficients in ki may

be chosen and ki may equivalently be determined as in SINDy [22]. In general, the problem (43) can be
solved using standard techniques, such as LASSO [98, 112], least angle regression [38], or an iterated
least-squares thresholding method [22].

This formulation is closely related to the gEDMD framework [60], a generalization of the EDMDmethod
to approximate the infinitesimal generator of the Koopman operator. The gEDMD least-squares formulation
is solved here row-wise with an additional sparsity constraint. There are also similarities to sparsity-
promoting DMD [55] and variants [52, 54], which aims to reconstruct a signal through a sparse
combination of modes/eigenfunctions, which have been computed from a least-squares solution. In contrast
to these works, we argue that the sparse representation of eigenfunctions themselves should be promoted.
Alternatively, it is also possible to use the dominant terms in accurately identified eigenfunctions, generally
associated with lightly damped eigenvalues, as guidance to select observables to regress on. Since the first
appearance of this article, further promising methods have been proposed to identify Koopman
eigenfunctions directly [48, 65, 88].

5.2. Data-driven discovery of discrete-time eigenfunctions
In discrete-time, an eigenfunction evaluated at a number of data points in X will satisfy[

λφ(x1) . . . λφ(xm)
]T

=
[
φ(x2) . . . φ(xm+1)

]T
. (44)

Again, searching for such an eigenfunction φ(x) in a libraryΘ(x) yields the matrix system:

(λΘ(X)−Θ(X ′))ξ = 0, (45)

where X ′ =
[
x2 x3 · · · xm+1

]
is a time-shifted matrix. This formalism directly identifies the functional

representation of a Koopman eigenfunction with eigenvalue λ.
If we seek the best least-squares fit to (45), this reduces to the extended DMD [117] formulation:

λξ =Θ†Θ ′ξ. (46)

Again, it is necessary to confirm that predicted eigenfunctions actually behave linearly on trajectories.

5.3. Koopmanmodel reduction and validation
For any data-driven modeling framework cross-validation is critical to ensure predictive and generalization
capabilities. Approximations of the Koopman operator allow a systematic evaluation based on its linearity
property. We can learn a finite-rank approximation using any EDMD-like method or learn eigenfunctions
directly. In either case, it is critical to validate that any candidate eigenfunction φ(x(t)) actually behaves
linearly on trajectories x(t) as the eigenvalue λ predicts. The error of an eigenfunction can be defined as

E= ||φ(x(t))− eλtφ(x(0))||2 (47)
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evaluated on a test trajectory x(t) and identified eigenfunctions can be ranked according to the error E. All
eigenfunctions with error below a threshold may then be used to construct a reduced-order model:

φ(x) =Λφ+∇φ(x) ·Bu (48)

analogous to equation (31). This model is closed and behaves linearly by design and we demonstrate in the
following its increased predictive power.

6. Example: system with a slowmanifold

6.1. Identification of eigenfunctions andmodels
We consider a system with quadratic nonlinearity that gives rise to a slow manifold [114]:

d

dt

[
x1
x2

]
=

[
µx1

λ(x2 − x21)

]
(49)

with µ=−0.1 and λ=−1. In the following, we apply the methods outlined in section 5 to the dynamical
system (49). For all models, a library of the first nine monomials (up to the third degree) is considered. Noise
corruption in measurement data can be particularly problematic. Here, we examine the recovery of
eigenfunctions and prediction performance for different noise magnitudes η= 0.1 and η= 0.9. Further,
reduced-order models are constructed based on eigenpairs (β,φ(x)) that are deemed accurate, i.e. have a
small L2 error when compared with the prediction using the associated eigenvalue, here denoted by β. The
threshold for the selection of eigenfunctions is 1 and 3 for noise magnitudes η= 0.1 and η= 0.9, respectively.
The L1 regularized problem is solved using the iterative least-squares thresholding algorithm (ITLS) as in
SINDy [22] and least angle regression (LARS) [38]; however, detailed results are only shown for LARS as
these have equivalent performance. LARS has the advantage that the number of iterations scales with the
number of candidate functions; only ten iterations are required here. The sparse solution is then selected
when there is minimal improvement in the absolute value of correlation with the evolving residual. The soft
thresholding parameter in the implicit formulation is set to α= 0.1 and α= 0.2 for η= 0.1 and η= 0.9,
respectively.

The results are displayed in figures 6 and 7 for the two noise cases. We observe that with increasing noise
level, the EDMD state transition matrix becomes denser due to overfitting (see (d)). In contrast, the implicit
approach and L1−regularized EDMD (termed ‘LARS’ or ‘ITLS’ in the following) yield sparse matrices, which
is more apparent for large noise magnitude. Note that the state matrix for the implicit formulation is
reconstructed using the identified eigenfunctions on the set of candidate functions for visualization purposes,
i.e. there are many zero entries and candidate functions that do not contribute to the actual dynamics.
Lightly damped eigenfunctions can be recovered for all approaches. Eigenfunctions, or specifically eigenpairs
(β,φ(x)), are deemed as recovered, if the prediction error falls below a threshold (marked as dashed line in
(f)). The prediction error is computed by evaluating the eigenfunction on a test trajectory and comparing it
with the evolution as predicted by the associated eigenvalue; the evolution is displayed in (e). These good
eigenpairs (colored as blue bars in (f)) are then used to construct reduced-order models (ROMs), that are by
design linear and closed (subject to small errors). Note that solution from the implicit formulation may not
be unique, i.e. there are several identical eigenpairs. However, only unique eigenpairs are used to construct
the reduce-order model. This is the reason why, e.g. in figure 6(f), the error for all eigenpairs falls below the
threshold, but only unique ones (marked in blue) are selected to construct the ROM.

For small noise magnitude (figure 6), the identified models and ROMs perform all well, except the
EDMD-based ROM, as one crucial eigenfunction associated with β=− 0.19 falls above the threshold and is
not selected. The eigenvalue is correct, but not the associated eigenfunction. If the eigenfunction is included
in the model (yellow bar in (f) and yellow dashed line in (g)), i.e. the model is constructed from blue and
yellow marked eigenpairs, it yields a similar performance as the full-state EDMDmodel. It can also be
observed that even in the low noise setting sparsification yields improvements. We note that the full-state
model and ROM obtained from the implicit formulation are identical, as all discovered eigenpairs fall below
the threshold (in (f)) and only unique pairs are selected to construct either model. We note that the
4D-ROM from the implicit formulation can achieve better accuracy with one dimension lower compared
with EDMD and the sparse EDMDmodel identified using LARS. Moreover, while all eigenpairs from the
implicit formulation are accurate, both EDMD and LARS yield also non-physical eigenfunctions. The overall
L2 prediction error on the test trajectory in the original state is summarized for the full-state models and
ROMs in (b) and (c), respectively.

For higher noise levels (figure 7), the performance differences become more apparent. LARS still yields
several more accurate eigenfunctions than EDMD, so that LARS and the LARS-ROM significantly
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Figure 6.Model comparison for the slow manifold system with noise level η= 0.1: (a) training and test data, (b) state prediction
error on test data for each identified model, (c) state prediction error on test data for each identified reduced-order model
(ROM), (d) transition matrix on set of measurement functions, (e) eigenpairs (β,φ(x)) validated on test trajectory (marked blue
if below threshold (dashed line)), (f) prediction error for each eigenpair (β,φ(x)) (error between trajectory as predicted by
eigenvalue and by evaluating eigenfunction on test trajectory), (g) state prediction using model K and ROM constructed from
validated (or good) eigenfunctions (marked in blue/yellow in (f)). For details see text.

outperform EDMD and the EDMD-based ROM. The performance of EDMD does not improve here by
truncating the SVD when computing the pseudo-inverse. The implicit formulation is more noise sensitive, as
it is searching for eigenfunctions in the nullspace of a matrix (42), and is only able to discover one accurate
eigenfunction. Interestingly, despite this caveat, the 2D model is able to outperform EDMD and the
EDMD-based ROM. The implicit model is unable to predict the exact transient behavior; however, it
accurately predicts the convergence to the steady state. The implicit ROMmodel, however, is insufficient
with just one eigenfunction φ(x) = x1 and is unable to predict the evolution of the second state x2. When
selecting one or two additional eigenfunctions for the EDMD-based ROM (in yellow shown in (g) for two
additional eigenfunctions, i.e. in total six eigenfunctions marked by blue and yellow in (f)), the prediction
performance improves considerably, although it is still unable to predict the steady-state behavior.

Summarizing, EDMD is suffering from overfitting and sparsity-promoting formulations can yield
significant performance enhancements. Model validation in terms of eigenfunctions is a crucial step and can
be used to construct better performing and lower-dimensional reduced-order models. More generally, these
results also demonstrate the importance of not just selecting good, but also the right eigenfunctions.

6.2. Control design
We now demonstrate control in intrinsic Koopman coordinates for the controlled system:

d

dt

[
x1
x2

]
=

[
µx1

λ(x2 − x21)

]
+Bu (50)
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Figure 7.Model comparison for the slow manifold system as in figure 6 but with higher measurement noise level η= 0.9. The
ROMmodel error displayed in (c) is cut at 100. For details see figure 6.

where the control vector is B ∈ R2. This system can be represented as a finite-dimensional, linear system in a
special choice of observable functions, making it amenable to optimal control [20]. KRONIC in intrinsic
coordinates provides a powerful alternative if the system does not allow for a fully controllable, linear
representation.

The system exhibits slow and fast dynamics for |λ| ≪ |µ| and has a single fixed point at the origin. This
nonlinear system can be embedded in a higher-dimensional space (y1,y2,y3) = (x1,x2,x21) where the
unforced dynamics form a closed linear system in a Koopman-invariant subspace:

d

dt

y1y2
y3

=

µ 0 0
0 λ −λ
0 0 2µ


︸ ︷︷ ︸

K

y1y2
y3

+

 1 0
0 1
2y1 0

B
︸ ︷︷ ︸

=By

u. (51)

However, By may be a function of y, and hence of state x, depending on the specific choice of B. Koopman
eigenfunctions of the unforced system, i.e. B≡ [0 0]T, are φµ = x1 and φλ = x2 − bx21 with b= λ

λ−2µ with
eigenvalues λ and µ, respectively. These eigenfunctions remain invariant under the Koopman operator K and
can be interpreted as intrinsic coordinates. Note that φpβ := φ

p
β are also Koopman eigenfunctions with

eigenvalue pβ for p ∈ N (and p ∈ Z for non-vanishing φpβ).
The dynamics of the Koopman eigenfunctions are affected by the additional control term B ̸=[0 0]T

according to (see also equation (31))

d

dt
φ=

µ 0 0
0 λ 0
0 0 2µ

φ+

 1 0
−2bx1 1
2x1 0

 ·Bu. (52)
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Figure 8. LQR for B= [0 1]T, µ=−0.1 and λ= 1 using standard linearization, truncated Koopman in y andφ (KRONIC)
compared with the solution of the nonlinear control problem (TPBV) and feedback linearization: (a) phase plot and (b) cost
evolution. KRONIC is outperforming all other approaches.

Here, the first term represents the unforced, uncoupled, linear dynamics of the eigenfunctions and the
second term a possibly state-dependent control term∇φ ·B, that incorporates the effect of control on each
eigenfunction.

The controller shall stabilize the unstable fixed point at the origin if either µ or λ are unstable. The
control objective is to minimize the quadratic cost function

Jx =

ˆ ∞

0
xTQx+Ru2 dt (53)

with Q= [ 1 0
0 1 ] and R= 1, weighing state and control expenditures equally. Analogously, we can define a cost

function in observable functions,

Jy =

ˆ ∞

0
yTQyy+Ru2 dt, Qy =

[
Q 0

0
0 0 0

]
, (54)

and in intrinsic coordinates,

Jφ =

ˆ ∞

0
φTQφφ+Ru2 dt, Qφ =

[
Q 0

b
0 b b2

]
. (55)

Here,Qy andQφ are chosen to yield the same cost in x. Linear optimal control is then directly applied to (52)
to derive the control law, which is then incorporated in (50). The controller is linear in y and φ and yields a
nonlinear controller in the state x:

uy =−Cyy=−
[
Cy,1 Cy,2

][x1
x2

]
−Cy,3 x

2
1

uφ =−Cφφ=−
[
Cφ,1 Cφ,2

][x1
x2

]
− (Cφ,3 − bCφ,1)x

2
1,

where Cy ∈ R1×3 and Cφ ∈ R1×3 are the control gain vectors in observable or intrinsic coordinates,
respectively.

6.3. Stabilization with unstable fast dynamics
First, we consider the system with µ=− 0.1 and λ= 1 with an unstable x2 direction. The control vector is
B= [0 1]T, resulting in a constant vector in y or φ coordinates, By = Bφ = [0 1 0]T. Note that the first
direction is uncontrollable, but also stable.

Standard LQR results are compared (see figure 8) for the linearized dynamics, truncated Koopman
system in y, truncated Koopman system in φ (KRONIC), as well as with feedback linearization [58]
(uFL = λx21 −CFLx) and with numerically solving the nonlinear control problem as a two-point boundary
value problem (TPBV), with performance evaluated in terms of the cumulative cost Ĵtx =

∑t
τ=0 Jx(τ). Both

controllers, in observable functions and intrinsic coordinates, achieve the same performance and outperform
linearized LQR and feedback linearization. The results for the truncated Koopman system in observables
correspond to those presented in [20]. There is no difference between those results and the control results of
the system in intrinsic coordinates, as these systems are connected via an invertible linear transformation.
One advantage of a formulation in intrinsic coordinates will become apparent in the next case, where the
stable and unstable directions are reversed.
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Figure 9. Control for B= [1 0]T, µ= 0.1 and λ=−1 comparing KRONIC (56) by solving the SDRE, Num. TPBV, and LQR on
the linearized dynamics: (a) phase plot, and (b) cumulative control performance over T= 50 time units. Note that the cost for
KRONIC can not be directly compared with TPBV and linear. LQR, as the controller in the latter two is optimized with respect to
Jx , while the former is optimized for Jφ.

6.4. Stabilization with unstable slow dynamics
We now consider (50) where the stable and unstable directions are reversed, i.e. µ= 0.1 and λ=−1. The
control input now affects the first state x1 with B= [1 0]T, otherwise this state is uncontrollable. As
elaborated in [20], in this case the linear system in observables (51) will become nonlinear in the control
term and, more importantly, will become unstabilizeable as the third state y3 has a positive eigenvalue 2µ.
Analogously, the Koopman system in intrinsic coordinates has an uncontrollable, unstable direction in φ2µ.
However, the dynamics of the Koopman eigenfunctions are uncoupled, thus the third direction can be
discarded and the controller is developed in the controllable subspace:

d

dt

[
φµ

φλ

]
=

[
µ 0
0 λ

][
φµ

φλ

]
+

[
1

−2bx1

]
u. (56)

Note that the third direction ϕ2µ(x) is a harmonic of ϕµ(x), i.e. ϕ2µ = ϕ2µ. Thus, these two directions may
not be independently controllable with a single input. Here, the controller for x is determined by solving the
SDRE (see section 4.3) at each time instant to account for the nonlinear control term. In a truncated
Koopman eigenfunction system like in this example, the weights in Jφ can generally not be modified to
directly replicate the cost Jx. Here, the weights for Jx are Q= eye(2) and R= 1, and for Jφ := J(φ,u) are
Qφ =Q and Rφ = 4R. The choice for Rφ ensures a fair comparison by enforcing the same applied energy
input for all methods.

Performance results are summarized in figure 9. It is also possible to combine KRONIC with MPC
allowing for more general objective functions. Then, the control could be formulated in terms of Jx by
computing the inverse φ−1 : Rr → Rn if it exists or estimating x from φ using, e.g. multidimensional scaling
as in [57]. Control in Koopman intrinsic coordinates allows one to discard uncontrollable, unstable
directions, for which standard control toolboxes such as Matlab’s lqr fail. Note that feedback linearization
fails in this case too: The control law is of the form uFL = x−1

1 CFLx. As the system approaches the origin, the
control input becomes unboundedly large.

7. Example: hamiltonian energy control

Conserved quantities, such as the Hamiltonian, are Koopman eigenfunctions associated with the eigenvalue
λ= 0. Hamiltonian systems represent a special class of systems for which we can easily discover a Koopman
eigenfunction directly from data.

The dynamics of a Hamiltonian system are governed by

d

dt
q=

∂H
∂p

,
d

dt
p=−∂H

∂q
, (57)

where q and p are the generalized state and momenta vectors, respectively. The HamiltonianH=H(q,p)
considered here is time-independent, representing the conserved energy in the system. Trajectories of the
system evolve on constant energy hypersurfaces {(q,p) : H(q,p) = E}, which may be interpreted as
oscillatory modes. Thus, energy level stabilization is a form of oscillation control and corresponds to
stabilizing invariant manifolds in phase space. Also nonlinear fixed point stabilization may correspond to
stabilizing a particular value of the Hamiltonian energy.
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Figure 10. KRONIC demonstrated for several Hamiltonian systems.

Consider the nonlinear, control-affine Hamiltonian system d
dtx= f(x)+Bu where f = [∂H/∂p−

∂H/∂q]T, with state vector x= [q p]T ∈ Rn, multi-channel input vector u ∈ Rq, and constant control matrix
B ∈ Rn×q. We may develop the control directly for the eigenfunction equation

d

dt
φ= 0 ·φ+∇xφ ·Bu := Bφu, (58)

where φ=H. This equation also represents the energy conservation law of the system: A change in the
energy, i.e. the Hamiltonian, corresponds to the external supplied work via u. The infinite-time horizon cost
function to be minimized is J= limt→∞

1
2

´ t
0 Q(H(x(t)))2 +uT(t)Ru(t)dt with scalar Q penalizing energy

deviations and R penalizing the cost expenditure. Assuming a single input u, the control law is given by
u=−sign(BH)

√
Q/RH(x) feeding back the current energy levelH(x). The ratio Q/R determines how

aggressive the controller is. A more aggressive controller, with Q> R, leads to a faster but also more costly
convergence to the desired state, and vice versa. For the specific case Q=R, the control law reduces further to
u=−sign(BH)H(x). Note that this feedback control law is linear in the Hamiltonian function, but
nonlinear in the state x. In the following, we demonstrate the control approach for several Hamiltonian
systems by solving the SDRE; an overview is provided in figure 10, where colored curves represent Koopman
controlled trajectories. We assume Q=R= 1 for all examples.

7.1. Frictionless pendulum
A frictionless pendulum given by a negative cosine potential V(x)=−cos(x1) is steered towards different
energy levelsHREF(x) = E ∀x, E ∈ {−1,0,1,2}, with feedback law u=−C(H(x)−HREF) =−C(H(x)−E).
Minimizing the Hamiltonian drives the system to the equilibrium point at the origin with E =−1 (green
curve in figure 10). Koopman control has improved performance over an LQR controller based on linearized
dynamics near the center.

We further compare the controller resulting from solving the state-dependent Riccati equation with an
energy-based control (EC) [7], which is developed from physical considerations:

SDRE : B=

[
0
1

]
, Ḣ= x2u, u=−sign(x2)(H(x)−E) (59a)

EC : B=

[
0

−cos(x1)

]
, Ḣ=−x2 cos(x1)u, u=−sign(−x2 cos(x1))(H(x)−E). (59b)

If the functional representation of the Koopman eigenfunction, or specifically here the Hamiltonian energy
function, is identified from data as in KRONIC, the feedback gain can be precomputed and does not need to
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Figure 11. Comparison of the energy control control strategy [7] and SDRE for the pendulum with ε= 0.1. The color coding in
the phase plots depicts the respective state-dependent control.

Figure 12. Prediction over the state space and error using the discovered Hamiltonian for the Duffing system trained on a single
trajectory.

be computed on-line. In figure 11, the state-dependent feedback law is shown for both controllers as
color-coded phase plots, where negative values are depicted by blue and positive values by red. The extrema
are identical. The control input from the EC controller is here slightly modified compared with (59b) by
moving the term−cos(x1) into u itself. Then the effective control and performance are displayed in terms of
û=−cos(x1)u for a fair comparison; otherwise, the EC controller would appear less performing. The
pendulum dynamics are locally controllable as long as u does not vanish, which is achieved if x1 ̸=π/2 and
x2 ̸=0 for the EC controller and if x2 ̸=0 for the SDRE controller. Both controllers yield a bang-bang strategy
and successfully steer the system to the desired energy level, though the SDRE controller is performing
slightly better.

7.2. Duffing system
Certain damped or forced oscillators are described by the Duffing equation (figure 10). The system is steered
towards the energy level E = 0, which corresponds to the separatrix cycle (yellow dashed lines) yielding a
periodic solution. The origin is a saddle point leading to a homoclinic orbit defined by
x∗2 =±x∗1

√
1− 1(x∗1 )

2/2 for x∗1 ⩽±
√
2. It is possible to stabilize the center fixed points by commanding a

lower reference energy; however, because of symmetry in the system, both fixed points are indistinguishable
in eigenfunction coordinates. This illustrates a fundamental uncertainty associated with Koopman
eigenfunction control.

For the eigenvalue λ= 0, (42) becomes−Γ(X, Ẋ)ξ = 0, and hence a sparse ξ is sought in the null-space
of−Γ(X, Ẋ). Polynomials up to fourth order are employed to construct a library of candidate functions
in (40) and (41). A single time series for t ∈ [0, 10] with time step∆t= 0.001 starting at the initial state
x0 = [0, −2.8]T is collected. Thus, each row in (40) and (41) corresponds to a time instant of the trajectory.
The prediction and associated error of the identified eigenfunction are displayed in figure 12. Here, the
energy is predicted over the full state space using the identified eigenfunction, the Hamiltonian energy
function, which is trained from a single trajectory. The magnitude of the error is very small ofO(10−17).
However, the eigenfunction evaluate on a trajectory would oscillate with a tiny amplitude around the true
energy level.

The error of the regression problem, the computational time for identifying the eigenfunction, and the
control performance (steering towards E = 0) for an increasing number of measurements in the estimation
step are displayed in figure 13. The identified Koopman eigenfunction with λ= 0 from 1792 measurements
(kink in figure 13(b)) is φ(x) = [ x21 x

2
2 x

4
1 ] [−

2
3

2
3

1
3 ]

T with errorO(10−8). This eigenfunction represents a
perfect recovery of the Hamiltonian up to a scaling, as a Hamiltonian multiplied by a constant scalar is also a
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Figure 13. Dependency in increasing number of measurements for the Duffing system: (a) error in the Koopman eigenfunction,
(b) error in (42) with estimated ξ, (c) computational time to solve for ξ in (42), and (d) cumulative control performance Ĵ over
T= 10 time units.

Figure 14. Switching control strategy based on KRONIC and the homoclinic orbit to jump between wells: (a) potential function
V(x1) showing initial conditions (blue and cyan) and extrema (red), (b) phase plot with unforced (yellow) and controlled
trajectories (blue and cyan), (c) instantaneous cost function and (d) total energy.

conserved quantity. Using a larger time step of∆t= 0.05, 56 measurements are sufficient to learn the
eigenfunction with errorO(10−6).

8. Example: basin hopping in a double well

A Koopman eigenfunction represents a topography over the state; e.g. the Hamiltonian function depicts the
energy landscape of the system. Trajectory control of a set of particles based on a single Koopman
eigenfunction is driven by the difference between the current and desired value in this topography. While the
Koopman eigenfunction is a global, linear representation of the system, the control of the particle is local, e.g.
by solving a suboptimal SDRE. This is illustrated for a particle in an asymmetric double potential
V(x1) =

1
4x

4
1 − 1

2x
2
1 − a

3x
3
1 + ax1 with a=−0.25 (figure 14(a)). The Hamiltonian isH= x22/2+V(x1) and the

dynamics are

d

dt

[
x1
x2

]
=

[
x2

−x31 + ax21 + x1 − a

]
+

[
1 0
0 1

]
u. (60)

For an initial condition in the left well (blue dots in figure 14(a)) the controller will fail to steer the state to
the fixed point x∗ = [1 0]T in the center of the right well as the trajectory will become trapped in the bottom
of the left well. Instead, the controller must first increase the energy level to the saddle transition, and after
the trajectory passes to the right basin, the energy can be decreased further.

We propose a switching control strategy that exploits the Koopman eigenfunctions to transport particles
between basins of different heights associated with different fixed points. In particular, the following control
strategy steers particles from the left to the right basin:
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u=


−C(x)(H(x)−H([a,0])) ifH(x)<H([a,1]),

0 ifH(x) =H([a,1])and x1 ⩽ a,

−C(x)(H(x)−H([1,0])) if x1 > a.

A particle on an energy level lower thanH([a,1]), associated with the saddle point, is first steered onto a
trajectory with slightly higher energy than the homoclinic orbit connecting the two basins. On this orbit,
control is turned off and the particle travels to the right well exploiting the intrinsic system dynamics. As
soon as it passes the saddle point, control is turned on again directing it to the lowest energy levelH([1,0]) at
the desired fixed point. The controller is demonstrated for two initial conditions, as shown in
figures 14(b)–(d), driving both to the desired energy level.

This controller can be fully derived from data: First, relevant Koopman eigenfunctions can be identified
from data, as shown in section 5. By analyzing roots and extrema of the eigenfunction corresponding to
λ= 0, equilibrium and saddle points can be identified. The homoclinic and heteroclinic orbits associated
with the saddles can be used as natural transit paths between basins. In each basin, eigenfunction control
drives the system to the desired state. Future applications for this control strategy include space mission
design and multi-stable systems such as proteins.

9. Example: double gyre flow

We now consider a high-dimensional, spatially evolving, non-autonomous dynamical system, with
time-dependent Koopman eigenfunctions. The periodically driven double gyre flow models the transport
between convection cells in the Rayleigh-Bénard flow due to lateral oscillations, yielding a simple model for
the gulf stream ocean front [104]. We employ here the same parameters as in Shadden et al’s seminal work on
Lagrangian coherent structures [102].

The time-dependent stream function is

Ψ(x,y, t) = A sin(πf(x, t)) sin(πy) (61a)

with f(x, t) = ε sin(ωt)x2 +(1− 2ε sin(ωt))x (61b)

with A= 0.25, ω= 2π, and ε= 0.25 on a periodic domain [0, 2]×[0, 1]. The velocity field v= [vx vy]T is
given by vx =−∂Ψ

∂y and vy =
∂Ψ
∂x .

The control objective is to steer an ensemble of trajectories to a level set of the stream function. This can
be interpreted as the control of an ensemble of active drifters or autonomous gliders in the ocean, which drift
due to hydrodynamic forces associated with vx and vy. The dynamics of the ith drifter are d

dt [
xi
yi ] =[

vx+γi sin(θi)
vy+γi cos(θi)

]
=
[ vx
vy

]
+ [ 1 0

0 1 ]u.

For the autonomous and unforced flow with ε= 0, the stream function is a Koopman eigenfunction
associated with the eigenvalue λ= 0. The forced system becomes

d

dt
Ψ(x,y) =

[
∂Ψ
∂x

∂Ψ
∂y

]
·
[
−∂Ψ

∂y
∂Ψ
∂x

]
︸ ︷︷ ︸

=0

+
[
∂Ψ
∂x

∂Ψ
∂y

]
·B︸ ︷︷ ︸

BΨ(x,y)

u. (62)

Without control, the stream functionΨ is conserved, as it is the negative of the Hamiltonian. The particles
follow streamlines, which are isolines of the stream function.

In the non-integrable case, with ε > 0, the total derivative of the stream function is given by

d

dt
Ψ(x,y, t) = AΨ(x,y, t)Ψ+BΨ(x,y, t)u (63)

where the vanishing term in (62) is not displayed. The first term in (63) arises from the time derivative
∂
∂tΨ(x,y, t) and is reformulated into a linear-like structure inΨ: ∂Ψ/∂t= Aπ cos(πf(x, t)) sin(πy)(∂f/∂t) =
π tan−1(πf(x, t))(∂f/∂t)Ψ = AΨΨ. The second term is the time-dependent analogue of the corresponding
term in (62).

For both cases, ε= 0 and ε > 0, a controller is developed for the stream function. The control is then
applied to an ensemble of drifters to steer them towards the level setΨ= 0.2. As in the previous examples a
quadratic cost function with Q= 1 and R= ( 1 0

0 1) is considered. In both cases, BΨ and AΨ depend on the
state, and for ε > 0 also on time. Thus, the state-dependent Riccati equation is solved at each point in space
and time. The controller successfully drives an ensemble of drifters distributed over the domain to the
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Figure 15. Controlled double gyre flow: (a) autonomous with ε= 0 steering an ensemble of drifters (initial condition depicted by
red dots) to the levelΨ= 0.2, (b) a single drifter trajectory (unforced and controlled) in the non-autonomous double gyre flow
with ε= 0.25, and (c) corresponding stream function values.

Figure 16. Comparison of Koopman system identification methods for control demonstrated for the Duffing system. Here,
EDMDc-MPC requires knowledge of the Koopman eigenfunction. The employed weights are QH = 1 and R= 1 for Jφ, and
Q= eye(2) and R= 1 for Jx (instantaneous cumulative costs are shown here). The prediction and control horizon for MPC is in
both cases N= 5.

desired level, as shown in figure 15(a). Trajectories are integrated using a 4th-order Runge-Kutta scheme
from t ∈ [0, 10]. Example trajectories of the non-autonomous system, with and without control, are
presented in figures 15(b) and (c).

Note that in the non-autonomous case, the reference isocurveΨREF = 0.2 (white dashed in figure 15(b))
oscillates from left to right while being periodically compressed and expanded in x-direction. The particles
follow the moving isocurve resulting in a small oscillation around the desired value (see figure 15(c)).

Koopman eigenfunction control can be interpreted in two ways: (a) applying local control to internally
driven swimmers or particles in an external field such as a fluid flow or magnetic field; or (b) driving the
external field in which the swimmers or particles drift. In the latter case, control drives the amplitude of the
stream function at each point to the desired value. For the double gyre flow with a constrained spatial
domain, the spatially distributed gain may be precomputed.

10. Discussion and conclusions

In summary, we extend the Koopman operator formalism to include actuation, and demonstrate how a
nonlinear control problem may be converted into a bilinear control problem in eigenfunction coordinates.
Next, we have presented a data-driven framework to identify leading eigenfunctions of the Koopman
operator and sparsity-promoting extensions to EDMD. We find that lightly damped or undamped
eigenfunctions may be accurately approximated from data via regression, as these eigenfunctions correspond
to persistent phenomena, such as conserved quantities. Moreover, these are often the structures that we seek
to control, since they affect long-time behavior. We have demonstrated the efficacy of this new data-driven
control architecture on a number of nonlinear systems, including Hamiltonian systems and a challenging
high-dimensional ocean mixing model. These results suggest that identifying and controlling Koopman
eigenfunctions may enable significant progress towards the ultimate goal of a universal data-driven nonlinear
control strategy.

Finite-dimensional approximations of the Koopman operator are typically obtained as its projection
onto a specified basis, which may suffer from a well-known closure issue. The matrix K is usually large, as the
state is lifted to a high-dimensional space, and the resulting model rarely closes and spurious eigenfunctions
may appear. Building on EDMD, we construct a reduced-order model using validated Koopman
eigenfunctions, so that the resulting model will be closed by design. Both KRONIC and EDMD with
control [64] provide Koopman-based system identification that can be leveraged for model-based control,
such as MPC or LQR, as shown in figure 16. However, there are a number of key differences: (a) KRONIC
directly identifies Koopman eigenfunctions, while EDMDc approximates the Koopman operator restricted to
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a high-dimensional span of observables. (b) EDMD augments the state vector with nonlinear measurements,
increasing the dimension of the system. In contrast, KRONIC yields a reduced-order model in terms of a few
Koopman eigenfunctions. (c) Control is incorporated in EDMDc as an approximated affine linear term.
KRONIC derives an expression for how eigenfunctions are affected by control through the generator
equation. However, this may render the control term bilinear (nonlinear in the state). (d) The cost function
for EDMDc is defined in the state or measurement space, while KRONIC defines the cost in eigenfunctions;
note that these cost functions are not always transferable. (e) Finally, KRONIC readily admits more
complicated solutions, such as limit cycle stabilization, as these correspond to level sets of the eigenfunctions.

As with previous studies, this work further cements the importance of accurate identification and
representation of Koopman eigenfunctions. Future work will continue to develop algorithms to extract
approximate eigenfunctions from data, and it is likely that these efforts will benefit from advances in
machine learning. In addition, there is a fundamental uncertainty principle in representing Koopman
eigenfunctions, as these eigenfunctions may themselves be irrepresentable, as are the long-time flow maps for
chaotic systems. Instead of seeking perfect Koopman eigenfunctions, which may not be attainable, it will be
important to incorporate uncertainty quantification into the data-driven Koopman framework. Model
uncertainties may then be managed with robust control.

The present work also highlights an important choice of perspective when working with Koopman
approximations. Generally, Koopman eigenfunctions are global objects, such as the Hamiltonian energy
function. Although a global, linear representation of the dynamics is appealing, there is also information that
is stripped from these representations. For example, in the case of the Hamiltonian eigenfunction,
information about specific fixed points and spatial locations are folded into a single scalar energy. If the
Hamiltonian is viewed as a topography over the phase space, then this eigenfunction only carries
information about the altitude, and not the location. In contrast, Lan and Mezíc [71] show that it is possible
to extend the Hartman–Grobman theorem to the entire basin of attraction of certain fixed points and
periodic orbits, providing a local linear embedding of the dynamics. Connecting these perspectives will
continue to yield interesting and important advances in Koopman theory. In addition, there are known
connections between the eigenvalues of geometric structures in phase space and the spectrum of the
Koopman operator [82]. This knowledge may guide the accurate identification of Koopman eigenfunctions.

Formulating control in terms of Koopman eigenfunctions requires a change of perspective as the control
objective may now be defined in eigenfunctions coordinates. Eigenfunctions characterize, e.g. geometric
properties of the system, such as fixed points and limit cycles, as particular level sets, and the control objective
can be equivalently formulated to steer the system towards these objects. Further, particular eigenfunctions
represent coherent structures, i.e. persistent features of the system, which have been targeted in control for a
long time. However, the specific selection of eigenfunctions to control and their interpretation regarding
specific control goals remains an open problem. Nevertheless, it may still be possible to formulate the control
in the original state space, e.g. by incorporating the state as observables, modifying the state weight matrix
appropriately, or by learning an approximation of the inverse mapping [57], which can be more easily
incorporated in the context of model predictive control. This also motivates additional work to understand
how controllability and observability in these coordinates relate to properties of the nonlinear system. The
degree of observability and controllability will generally vary with different eigenfunctions, so that it may be
possible to obtain balanced realizations. Moreover, classic results, such as the PBH test, indicate that
multi-channel actuation may be necessary to simultaneously control different eigenfunctions corresponding
to the same eigenvalue, such as the Hamiltonian energy and conserved angular momentum. The additional
degrees of freedom arising from multi-channel inputs can also be used for eigenstructure assignment to
shape Koopman eigenfunctions [49]. Thus, actuation may modify both the shape of coherent structures (i.e.
Koopman modes associated with a particular eigenfunction) and their time dynamics. It may also be possible
to use Koopman linear embeddings to optimize sensor and actuator placement for nonlinear systems.

Finally, as undamped or lightly damped eigenfunctions correspond to conserved or nearly conserved
quantities, there are many potential applications of the proposed control strategy. For example, symmetries
give rise to other conserved quantities, which will likewise yield new Koopman eigenfunctions. In many
physical systems, simultaneously controlling the system energy and angular momentum may be an
important goal. Much of the present work was formulated with the problem of space mission design in mind.
Energy efficient transport throughout the Solar System has long driven advances in theoretical and
computational dynamical systems, and may stand to benefit from control based on Koopman
eigenfunctions. More generally, there is a broad range of applications that stand to benefit from improved
nonlinear control, include self-driving cars, the control of turbulence, suppressing the spread of disease,
stabilizing financial markets, human machine interfaces, prosthetics and rehabilitation, and the treatment of
neurological disorders, to name only a few.
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Appendix A. Optimal control

We begin by formulating optimal control for the full nonlinear system in (16). This procedure then simplifies
considerably for linearly factorizable or linear dynamics, motivating Koopman embeddings.

A.1. Hamilton–Jacobi–Bellman equation
A nonlinear optimal control formulation for the system in (16) can be established using dynamic
programming [15]. This relies on Bellman’s principle of optimality [13], stating that an optimal trajectory
remains optimal when the problem is initialized at intermediate steps, and leads to the
Hamilton–Jacobi–Bellman (HJB) equation [12]:

0= inf
u
{L(x,u)+∇xJ

∗ · f(x,u)}= inf
u
H(x,∇xJ

∗,u) . (A1)

If the HJB equation (A1) has a continuously differentiable, positive definite solution J∗(x) [15], also referred
to as an optimal value function, then the optimal control law is

u∗ = arg min
u

H

(
x∗,

∂J∗

∂x
,u

)
. (A2)

The solution is a state-feedback control law, i.e. a closed-loop controller, which is optimal for any initial
condition and solved for all states at once. Solving this nonlinear PDE is computationally challenging and
only feasible for low-dimensional problems. If solved, however, the HJB equation provides a global solution
to the optimal control problem.

A.2. Euler–Lagrange equations
An alternative approach searches for the optimal trajectory under certain constraints using a variational
argument and Pontryagin’s minimum (or maximum) principle [91]. Here, a small variation around an
optimal trajectory is considered, for which the change in cost shall vanish. The sequence of control inputs
that solves this problem, constrained by the state dynamics (16), constitutes the optimal control. However,
the Euler–Lagrange equations provide only necessary, but not sufficient, conditions, so that the solution may
only converge to a local minimum and the control is generally not optimal in practice.

Similar to (A1), a Lagrange-type expression is formulated for the control Hamiltonian
H(x,u,z) := L(x,u)+ zTf(x,u), where z is referred to as Lagrange multiplier, co-state or adjoint variable. A
necessary condition is the minimization of the control Hamiltonian (i.e. Pontryagin’s minimum principle),
leading to the following set of coupled ordinary differential equations:

ẋ=
∂HT

∂z
(x,u∗,z) = f(x,u) (A3a)

ż=− ∂HT

∂x
(x,u∗,z) (A3b)
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with stationarity condition ∂HT

∂u (x,u
∗,z) = 0 and transversality boundary conditions x(0) = x0 and

limT→∞ z(T) = 0. Then, the optimal control is given by

u∗ = arg min
u

H(x,u,z). (A4)

If L(·) and f(x(·),u(·)) are concave, then the necessary condition is also sufficient and any path that satisfies
these conditions also solves the optimal control problem.

The Euler–Lagrange equations (A3a) lead to an optimal open-loop control: The control u∗ point-wise
minimizes the control Hamiltonian H(x∗(t),u,z∗(t)). This two-point boundary value (TPBV) problem is
solvable for higher-dimensional problems in contrast to the HJB equation. However, in practice, only a local
minimum is found. For systems with a high number of degrees of freedom, such as fluid flows, expensive
direct and adjoint simulations render this approach infeasible, instead motivating the use of reduced-order
models.

A.3. Linear or factorized systems
The control problem above simplifies considerably for linear systems of the form

d

dt
x(t) = Ax+Bu, x(0) = x0. (A5)

Using ansatz z= Px for the co-state, the optimal control is given by

u=−R−1BTz=−R−1BTPx, (A6)

with constant gain C= R−1BTP and where the positive semi-definite matrix P ∈ Rn×n is the solution to the
algebraic Riccati equation (ARE) [106]:

Q+PA+ATP−PBR−1BTP= 0. (A7)

For this special case, referred to as the linear quadratic regulator (LQR), the Euler–Lagrange equations and
the HJB equation lead to the same solution, using a quadratic ansatz for co-state and value function. The
ARE (A6) can be solved upfront and yields a global state-feedback control law. This simplicity motivates
efforts to find linear representations for nonlinear systems and explains why nonlinear embeddings via
Koopman operator theory are so appealing.

For later reference, we point out an extension of LQR to control-affine, nonlinear systems by factoring
the governing equations into a linear-like structure, as in (A5), where the state transition matrix and
actuation matrix become state-dependent:

d

dt
x(t) = A(x)x+B(x)u, x(0) = x0. (A8)

For these systems, it is common to solve the ARE point-wise, i.e. at each point x in time, leading to the
state-dependent Ricatti (SDRE) equation [89]

Q+PA(x)+AT(x)P−PB(x)R−1BT(x)P= 0 (A9)

where the weight matrices Q and Rmay also be state dependent. In contrast to the ARE, which can be
pre-computed off-line, the SDRE is solved on-line at each x. The required computational power and memory
during the on-line phase may render it infeasible for high-dimensional systems. The SDRE generalizes LQR
for nonlinear systems, retaining a simple implementation and often yielding near optimal controllers [30].
We refer to [29, 31] for a review on the SDRE and related discussions, e.g. on controllability and stability.

Appendix B. Effect of misrepresentation of eigenfunctions

We examine the effect of an error in the representation of a Koopman eigenfunction on the closed-loop
dynamics based on (33) and provide an upper error bound. We consider the following cost function

J=

ˆ
Qφ2(x)+Ru2 dt (B1)

where a single eigenfunction φ(x) is to be controlled and with positive weights Q and R. Assuming a
control-affine system ẋ= f(x)+B(x)u, the eigenfunction satisfies

φ̇(x) = λφ(x)+C(x)u (B2)
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with C(x) :=∇φ(x) ·B(x). Here, φ is the Koopman eigenfunction associated with the autonomous
dynamics satisfying φ̇=∇φ(x) · f(x) = λφ(x). We assume full-state measurements x are available and
knowledge of how the control affects these measurements B(x). Thus, we do not have to represent the
control term C(x) in terms of eigenfunctions but can evaluate it exactly given the current measurement x and
knowledge of φ(x). Solving the scalar Riccati equation (33) analytically yields

P=
1

C(x)R−1CT(x)

(
λ+

√
λ2 +QC(x)R−1CT(x)

)
. (B3)

The feedback control is then given by

u=−R−1CTPφ=− R−1CT(x)

C(x)R−1CT(x)

(
λ+

√
λ2 +QC(x)R−1CT(x)

)
φ(x) (B4)

and the resulting closed-loop dynamics are

φ̇(x) =−
√
λ2 +QC(x)R−1CT(x)φ(x) =−√

µφ(x), (B5)

where µ := λ2 +QC(x)R−1CT(x). We examine the effect of a misrepresentation of the eigenfunction:

φ̂(x) := φ(x)+ εψ(x) (B6)

where εψ(x) is the discrepancy to the true eigenfunction φ(x) with small ε. The dynamics of φ̂(x) are given
in a factorized representation by

˙̂φ(x) = φ̇(x)+ εψ̇(x) = λφ(x)+C(x)u+ ε∇ψ · (f(x)+B(x)u)

=
λφ(x)+ ε∇ψ(x) · f(x)

φ(x)+ εψ(x)
φ̂(x)+ (C(x)+ εD(x))u (B7)

with D(x) :=∇ψ(x) ·B(x). The upper bound for the error in µ due to the misrepresentation of φ(x) is

|µ− µ̂|=
∣∣∣λ2 +QC(x)R−1CT(x)−

(
λφ(x)+ ε∇ψ(x) · f(x)

φ(x)+ εψ(x)

)2

−Q(C(x)+ εD(x))R−1(C(x)+ εD(x))T
∣∣∣

=
∣∣∣λ2 − εQ(CR−1DT +DR−1CT)− ε2QDR−1DT − λ2φ2 + ε2λφ∇ψ · f+ ε2(∇ψ · f)2

(φ+ εψ)2

∣∣∣
⩽
∣∣∣λ2 − εQ(CR−1DT +DR−1CT)− ε2QDR−1DT − λ2φ2 + ε2λφ∇ψ · f+ ε2(∇ψ · f)2

φ2(x)

∣∣∣
=
∣∣∣− εQ(CR−1DT +DR−1CT)− ε2QDR−1DT − ε2λφ∇ψ · f+ ε2(∇ψ · f)2

φ2

∣∣∣
=
∣∣∣− ε

(
QCR−1DT +QDR−1CT + 2λ

∇ψ · f
φ(x)

)
− ε2

(
QDR−1DT +

(∇ψ · f)2

φ2(x)

)∣∣∣. (B8)

Appendix C. Series solutions for eigenfunctions

It is possible to solve the PDE in (37) for eigenfunctions using standard techniques, such as Taylor or Laurent
series.

C.1. Linear dynamics
Consider linear dynamics

d

dt
x= x. (C1)

Assuming a Taylor series expansion for φ(x):

φ(x) = c0 + c1x+ c2x
2 + c3x

3 + · · ·

then the gradient and directional derivatives are given by:
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∇φ= c1 + 2c2x+ 3c3x
2 + 4c4x

3 + · · ·
∇φ · f= c1x+ 2c2x

2 + 3c3x
3 + 4c4x

4 + · · ·

Solving for terms in (37), c1 = 0 must hold. For any positive integer λ, only one coefficient may be nonzero.
Specifically, for λ= k ∈ Z+, then φ(x)= cxk is an eigenfunction for any constant c. For instance, if λ= 1,
then φ(x)= x.

C.2. Quadratic nonlinear dynamics
Consider a nonlinear dynamical system

d

dt
x= x2. (C2)

There is no Taylor series that satisfies (37), except the trivial solution φ= 0 for λ= 0. Instead, we use a
Laurent series:

φ(x) = · · ·+ c−3x
−3 + c−2x

−2 + c−1x
−1 + c0

+ c1x+ c2x
2 + c3x

3 + · · · .

The gradient and directional derivatives are given by:

∇φ= · · · − 3c−3x
−4 − 2c−2x

−3 − c−1x
−2 + c1 + 2c2x

+ 3c3x
2 + 4c4x

3 + · · ·
∇φ · f= · · · − 3c−3x

−2 − 2c−2x
−1 − c−1 + c1x

2 + 2c2x
3

+ 3c3x
4 + 4c4x

5 + · · · .

All coefficients with positive index are zero, i.e. ck = 0 for k⩾ 1. The nonpositive index coefficients are given
by the recursion λck+1 = kck, for k⩽−1. The Laurent series is

φ(x) = c0

(
1−λx−1 +

λ2

2
x−2 − λ3

3!
x−3 + · · ·

)
= c0e

−λ/x.

This holds for all λ ∈ C. There are also other Koopman eigenfunctions that can be identified from the series.

C.3. Polynomial nonlinear dynamics
For a more general nonlinear dynamical system

d

dt
x= axn, (C3)

φ(x) = e
λ

(1−n)a x
1−n

is an eigenfunction for all λ ∈ C.
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