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Abstract
Two-dimensional (2D) materials have been a central focus of recent research because they host a
variety of properties, making them attractive both for fundamental science and for applications. It
is thus crucial to be able to identify accurately and efficiently if bulk three-dimensional (3D)
materials are formed by layers held together by a weak binding energy that, thus, can be potentially
exfoliated into 2D materials. In this work, we develop a machine-learning (ML) approach that,
combined with a fast preliminary geometrical screening, is able to efficiently identify potentially
exfoliable materials. Starting from a combination of descriptors for crystal structures, we work out
a subset of them that are crucial for accurate predictions. Our final ML model, based on a random
forest classifier, has a very high recall of 98%. Using a SHapely Additive exPlanations analysis, we
also provide an intuitive explanation of the five most important variables of the model. Finally, we
compare the performance of our best ML model with a deep neural network architecture using the
same descriptors. To make our algorithms and models easily accessible, we publish an online tool
on the Materials Cloud portal that only requires a bulk 3D crystal structure as input. Our tool thus
provides a practical yet straightforward approach to assess whether any 3D compound can be
exfoliated into 2D layers.

1. Introduction

Two-dimensional (2D) materials have been extensively explored for various applications across several
disciplines [1–7]. In part, the scientific excitement about 2Dmaterials originates from their ultimate thinness,
making them exceptionally promising for applications, e.g. in electronics [8–10], in catalysis [11–13], or in
molecular separations [14–16]. Moreover, the physical properties of monolayers are often distinct from those
of their parent three-dimensional (3D) materials, since charge and heat transports are restricted
to a plane [17]. Therefore, this makes them attractive not only for applications, but also for fundamental
science [18–21]. Furthermore, the possibility of realizing stacks of 2D layers into van-der-Waals (vdW)
heterostructures opens the way to a combinatorially large number of novel properties to be explored [22–26].

Decades ago, it was demonstrated that layered vdWmaterials, such as metal dichalcogenides, can be
mechanically and chemically exfoliated into a few or even single layers [27]. Since the experimental
demonstration of the exfoliation of graphene [28], the interest in these materials and in the experimental
approaches to exfoliate them has sparked [29–32]. However, experimentally synthesizing these materials is
time-consuming, only a fraction of them have ever been synthesized, resulting in a limited diversity of the 2D
materials that are investigated experimentally. First-principle simulations, and in particular density-
functional theory (DFT) calculations, have been thus recently employed to determine the binding-energy
strength between layers and consequently assess whether a structure can be exfoliated, resulting in the
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Figure 1. Schematic illustrating the steps of our algorithm to efficiently determine the exfoliability of 3D materials. From left to
right: 1 the procedure initiates from the unit cell of a bulk crystal structure. 2 A 3× 3× 3 supercell of the bulk primitive cell is
constructed, and chemical bonds are identified by comparing the bond distances with the atomic vdW radii. 3 Low-dimensional
subunits are determined based the rank of the lattice vectors embedded into chemically bonded units, and a 2D primitive cell is
built (LowDimFinder geometrical pre-filtering step). 4 The crystal structures passing the previous steps are represented with
numeric features, used as input of a random forest classifier (step 5) trained and tested on a set of over 2000 binding energies
calculated with DFT. Our ML model predicts if the material has a high binding energy (HBE) and should be discarded, thus
filtering out potential 2D structures for further analysis (step 6).

creation of databases of potential 2D materials [33–39]. However, such calculations are quite expensive and
require deep understanding of the simulation methods to obtain accurate results, as well as the capability of
using a workflow infrastructure to manage the resulting large number of calculations [40–43]. Therefore,
first-principles simulations might be a barrier when needing a fast, yet accurate, prediction of the
exfoliability of candidate materials.

Recently, different approaches based on machine learning have been employed to optimize the synthesis
process of 2D materials [44–50]. Here, we develop a combined geometrical and machine-learning (ML)
model that can provide accurate and fast predictions on whether a bulk 3D material is formed by layers held
together by a weak binding energy and, thus, is potentially exfoliable into 2D layers. Our multi-step
procedure, illustrated in figure 1, starts by pre-screening layered structures based on geometrical criteria
requiring only the atomic positions of the atoms in the structure. The resulting filtered structures are
featurized, and finally a ML model based on a random forest classifier is applied to assess whether the
material can be exfoliated or, instead, has a high binding energy (HBE).

We train and then evaluate the performance of the model using a set of 2392 structures from [37],
obtained from the preliminary geometrical step applied on a large initial set of 108 423 unique 3D structures
originating from the Inorganic Crystal Structure Database (ICSD) [51] and Crystallography Open Database
(COD) [52]. To capture the underlying structural patterns that correlate with the exfoliability of a material,
we first reduce the number of descriptors needed by the model, and then use a SHapely Additive
exPlanations (SHAP) analysis to explain the most relevant features. We also compare our best-performing
ML model with a deep neural network. Finally, in order to make our methodology and code immediately
available to all researchers without the need of any software installation, we implement and publish an online
web tool on the Materials Cloud web platform [53], available at
http://ml-layer-finder.materialscloud.io and working directly in the web browser. The tool provides the
opportunity, even for non-experts of simulations, to just upload a crystal structure in a variety of file formats
and rapidly evaluate if it can be exfoliated into 2D layers or not.

2. Methods

2.1. Description of the crystal structures and the method used to identify layered compounds
In the following, we will indicate exfoliable 2D materials as a positive hit of a model, while a HBE material as
a negative hit. Therefore, false positives indicate HBE systems that are instead predicted to be exfoliable (2D),
while false negatives indicate exfoliable systems that the model suggests to discard as HBE.
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Our screening procedure (steps 1 and 2 of figure 1) starts from the comprehensive initial set of 108 423
unique bulk 3D crystals extracted from ICSD and COD, used in the study by Mounet et al [37, 54]. In [37],
the preliminary geometric step (that we will refer to as the LowDimFinder) identifies chemically-bonded
subunits by comparing interatomic distances dAB between pairs of atoms A and B in the structure with the
corresponding atomic vdW radii rA and rB (radii are taken from [55]). We consider two atoms as bonded if
dAB ⩽ rA + rB −∆, where∆ is a tunable parameter (see below). The dimensionality of each connected
manifold is then obtained from the rank of the set of 3D lattice vectors embedded into the manifold (see [37]
for more details). One main advantage of this approach is identifying subunits of any dimensionality (i.e. 2D
layers, 1D chains, and 0D clusters). Moreover, in the case of 2D layers, no specific orientation is assumed for
the 2D plane with respect to the Cartesian axes.

For the purposes of preliminary filtering, we wish to have a very low rate of false negatives (i.e. a very
high recall rate) so as not to miss important materials, while at the same time we can accept a moderate
amount of false positives, because these can be further filtered later (first by the ML model discussed here,
and possibly later by accurate DFT simulations following the application of our ML model). Therefore, also
considering that this first filtering is only aware of distances between atoms and not of their chemistry
(except for the atomic vdW radii), we consider five values for the tunable parameter, namely∆= 1.1,1.2,
1.3,1.4,1.5Å. Any crystal structure recognized as 2D for at least one of the five values of∆ is then handed to
the ML model in the following steps.

2.2. Choice of descriptors for 3D compounds
A crucial preliminary step before implementing and training a ML model is to represent crystal structures in
terms of numerical features representing the material chemistry and geometry.

Different strategies have been developed in the literature [56–59]. In this work, all the descriptors are
chosen from those available and implemented in the matminer package [60]. Choosing the right descriptors
requires care and testing, and is dependent on the details of the descriptors and the properties of interest. As
such, there is not a single unique correct way to represent crystal structures. We start from a set of potentially
relevant features and, as a first step, we identify which of these are most relevant (see supplementary
information section 1 for details). Our final set of features are based on those proposed by Ward et al [61],
where space is partitioned into Wigner–Seitz cells using Voronoi tessellation. These cells (including all points
in space closer to a central atom than to any other atom) are then used to assign neighbors and then
construct local descriptors of the environment that are only weakly sensitive to small changes that might
occur during a geometry relaxation. Derived from the Voronoi tessellation, several attributes are proposed in
[61]. In the following we will restrict to three different sets of features that we selected for our final model:
chemical ordering, maximum packing efficiency, and local environment attributes. The first one, chemical
ordering, describes how much the placement of species in a structure deviates from random, using
Warren–Cowley-like ordering parameters [62]. The second one, maximum packing efficiency, measures the
largest sphere that fits inside each Voronoi cell. The last, local environment attributes, are based on
comparing elemental properties (such as the electronegativity and 21 other elemental properties) of the
central atom to its neighbors, weighted by the surface area of the faces of the Wigner–Seitz cells. More
technical details can be found in [61].

2.3. Model selection and training
To achieve a ML model that can classify potentially exfoliable materials, we train the model on binding
energies for the 2392 structures prefiltered by the LowDimFinder, that were computed using DFT in [37]. We
first center the features at zero and rescale them using their mean and standard deviation, respectively. In
order to determine the quality of the model on an unseen data set, train-test splitting is performed randomly,
and the size of the train set is 70%. All the statistics reported later are computed by averaging over ten
different random seeds used for train-test splitting.

We tested various learning approaches, including deep learning architectures. Although some of the
architectures perform well (see supplementary information section 2), we decided to employ and discuss
further in the following a random forest classifier ML model [63], as it is relatively simple and, at the same
time, it demonstrates an excellent performance for our goal. The random forest classifier is trained with a
number of trees of 600 and a maximum depth of trees of 17.

3. Discussion and results

Mounet et al [37] performed binding energy calculations on 2662 prospective layered structures and
identified those that are held together by weak interactions and are ready for exfoliation. We consider 2392
structures out of 2662 (two different vdW DFT functionals are used in [37]; here, we restrict only to those for
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Figure 2. Evaluation of the performance of our ML-based model with respect to accurate results on the binding energies
calculated using DFT. The bar labels combine the dimensionalities obtained for all values of∆ used to determine atom bonds in
the preliminary geometrical LowDimFinder screening (see main text). For example, if the obtained dimensions of subunits for the
five values of∆ are [0,2], [0,2], [0,2], [2] and [2], the resulting label reported here is [0,2],[2]. Structures are color-coded based
on the results of the ML classifier. Green: True positives (i.e. structures that are correctly recognized as exfoliable by the ML
model). Red: False positives (i.e. compounds incorrectly identified as exfoliable 2D). Blue: True negatives (i.e. structures correctly
determined as HBE structures). Black: False negatives (i.e. structures incorrectly classified as HBE structures). The value on the
y axis is the percentage of structures with respect to the total number of structures with at least one 2D subcomponent in the
LowDimFinder analysis.

Table 1. Performance of our ML model (based on a random forest classifier) on the test data set. Our model captures 513 out of 525
structures correctly (true positives) resulting in a very high recall rate of 98% (i.e. the model has very few false negatives). Additionally, it
reduces the number of false positives by≈ 50% with respect to the initial LowDimFinder geometrical screening.

Total number
Label Precision Recall F1-score of structures

HBE 85% 49% 62% 139
2D 88% 98% 93% 525

which binding energies are calculated using the vdW-DF2-C09 functional [64–66], so as to have a consistent
calculation method of binding energies for all structures in the dataset). In particular, our portfolio contains
1813 structures that are determined to be exfoliable into 2D layers by DFT simulations including vdW
interactions (vdW-DFT), defined as those whose binding energy is lower than 130meVÅ−2, while 579
structures have HBE (although the first LowDimFinder preliminary filtering had not discarded them).

Figure 2 illustrates the combined performance of the preliminary LowDimFinder geometrical filtering
followed by our ML model, with respect to the accurate vdW-DFT calculations, resolved with respect to the
set of dimensionalities of the sub-units identified by LowDimFinder (the performance of LowDimFinder
alone can be better inspected in supplementary figure S1). In particular, in figure 2 we see that systems that
are tagged by LowDimFinder as only having 2D subcomponents for any value of∆ (labeled as [2]) are those
with highest probability of displaying low binding energy, and thus promising for exfoliation. Moreover, this
set also has a very low rate of false positives. On the other hand, structures marked also displaying a
zero-dimensional subunit for at least one value of∆ (and in particular [0,2] and [0,2],[3]) include a
relatively large fraction of systems that are confirmed to have HBE by vdW-DFT. Nevertheless, these results
demonstrate that, while the dimensionalities found by LowDimFinder alone can provide an indication of the
probability of finding false positives, they are not sufficient (alone) to provide a reliable method to reduce
their number without also increasing significantly the rate of false negatives (we remind that our design
strategy is to have the smallest amount possible of false negatives, but avoiding to miss important 2D
candidates).

Therefore, we train our ML model (based on the random forest classifier) to improve the classification of
structures in 2D and HBE, still at a negligible fraction of the cost of a full DFT simulation. As visible in
figure 2, the ML model is able to correctly label most HBE systems that had passed the LowDimFinder
prefilter (true negative systems, in blue). Detailed results on the performance of our ML model is reported in
table 1. In the test dataset, we have 664 structures, including 139 HBE structures and 525 exfoliable structures.
Our model managed to correctly predict 513 structures as true positives (i.e. a recall of 98%, very close to our
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Figure 3. Binding energy versus change in the interlayer distance (for the 3D structures relaxed using the vdW-aware DF2-C09
functional with respect to the relaxation with the revPBE functional, as defined in figure 2(c) of [37]). Using our trained ML
model, materials are classified as exfoliable or with high binding energy and reported in different colors. Green and blue circles
show structures that are classified correctly both with vdW-DFT and our ML model as exfoliable and high binding energy
structures (true positives and true negatives, respectively). Red circles indicate exfoliable structures according to vdW-DFT, but
tagged as HBE by our ML model (false negatives), while black circles represent HBE structures as determined by vdW-DFT, while
the ML model tags them as exfoliable (false positives).

ideal goal of 100%), while at the same time reducing the number of false positives of the LowDimFinder by
about 50%. Therefore, our model reaches our goal of significantly filtering the number of candidates that can
go to an ultimate screening step using DFT, thus reducing the associated computational cost.

To better understand the distribution of false positives and false negatives of our ML model, we first show
in figure 3 the binding energies for all compounds included in our training set, as a function of the change in
the interlayer distance with two DFT functionals (including or not vdW interactions, respectively, as an
approximate proxy for the strength of vdW interactions in the material). This figure mirrors figure 2(c) of
[37], while adding information on the performance of our ML model. The figure visualizes graphically the
model performance, and shows that false positives and negatives do not have a specific distribution with
respect to the two variables of the scatter plot.

We then use the SHAP technique [67] to gain a deeper understanding of what the model learned in the
training process. SHAP can disclose how the features used by the model affect the predictions. Figure 4 shows
the five most important variables of our model: maximum packing efficiency, maximum number of unfilled
s states, chemical ordering (first neighbor), mean of periodic table row, and chemical ordering (third
neighbor). The importance here is defined as the mean absolute SHAP value of all the points in the dataset.
The colors in the figure denote the value of the input variable, where red indicates high and blue indicates
low values. Consequently, red on the right-hand (left-hand) side of the plot implies a positive (negative)
correlation with exfoliation.

Figure 4 shows that maximum packing efficiency is the most important feature and has a negative
correlation with exfoliation, consistent with what one can expect as this feature indicates the largest sphere
that fits inside each Voronoi cell, and structures with high packing efficiency will be most probably not
layered (packing ratio was already used as a filtering criterion in one of the early DFT studies to predict 2D
materials [33]). The second most important feature is the maximum number of unfilled s states. Indeed, as
the number of unfilled s states increases, the material will tend to form stronger bonds and will be
consequently less prone to break them and be exfoliated, justifying its negative correlation. Another
important variable is chemical ordering (both for first and third neighbors). This variable is associated with
the arrangement of the crystal structure, where structures with ordered arrangements will have a larger value
(closer to 1), while random arrangements will have a value closer to zero. Also in this case, the negative
correlation visible in figure 4 can be expected, because structures very ordered configurations are typically
strongly bonded 3D materials that are not composed by exfoliable layers. Finally, another important feature
is the mean of the periodic table row, indicating a tendency of lighter elements (i.e. small value for the
periodic table row) to form exfoliable materials.

Finally, since our aim is to reduce as much as possible the number of false negatives, we report explicitly
the 12 exfoliable structures that are considered as HBE by our ML model. These are schematically
represented in figure 5 (the complete list is shown in supplementary information table S2). We highlight in
particular that 6 structures out of 12 contain halogen elements, and 3 contain sulfur. This result can be used
as a guide for further improvements of the model, e.g. to include further descriptors that can help in
correctly identifying structures with low binding energy (we note, however, that other structures including
the same chemical elements exist, where the model works correctly: therefore their sole presence cannot be
used as a simple criterion to identify false negatives).
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Figure 4. SHAP plot summarizing the five most important variables for our model, evaluated on all structures in the dataset. The
color corresponds to the value of each input variable and reveals if there is a positive or negative correlation with the possibility of
exfoliation (e.g. red circles on the left-hand side of the plot indicate a negative correlation). Additionally, the violin plots show the
distribution of the importance, i.e. the spread of the SHAP values (along the x axis) and how many samples have similar SHAP
values (the thickness of the violin).

Figure 5. Summary of the 12 false negatives of our ML model (out of the 525 exfoliable structures in our test set). In addition to
LiMnSe2, six structures include halogens, three include sulfur and two include bismuth.

4. Online tool

In order to give easy access to our model and its predictions without the need of preliminary expertise, we
also implement an online web tool that we publish on the Materials Cloud web platform [53] at the URL
http://ml-layer-finder.materialscloud.io. The tool works directly in the browser and does not require any
installation.

In the first selection page, the user can upload a bulk crystal structure. Several common formats are
supported thanks to the parsers implemented in the Atomic Simulation Environment (ASE) [68] and
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Figure 6. Screenshot of the online tool implementing the algorithms of this paper, available on the Materials Cloud [53]
Work/Tools section. Once a material is uploaded, the output page displays the prediction of exfoliability by our ML model. Here,
a screenshot of a part of the tool results page is shown, displaying the ML model prediction in the case of graphite. The output
page of the tool includes more information, such as the visualization of the crystal structure and its decomposition into 2D layer
components.

pymatgen [69] libraries. Once the bulk structure is uploaded (or selected from already available examples),
the tool performs the needed computations to first determine if the material is layered, and then to predict if
it is exfoliable. In particular, the tool (following the workflow of figure 1) first computes the bonds and then
identifies the dimensionality of each connected sub-manifold using the LowDimFinder. Any subunit that is a
2D layer is displayed on the output web page. The tool then generates feature vectors for these structures, and
then it uses the pre-trained ML model to predict if the crystal structure can be exfoliated or has a HBE. The
result is provided on output, together with a table summarizing the SHAP value of the most important
features for the uploaded structure (see figure 6).

5. Conclusion

We presented an efficient yet accurate method combining a preliminary geometrical screening followed by a
random-forest-classifier ML model to identify bulk compounds that can be exfoliated into 2D materials.

7



Mach. Learn.: Sci. Technol. 3 (2022) 045014 M Tohidi Vahdat et al

The procedure that we developed provides an effective and straightforward prefilter to assess whether any
bulk structure has the potential to be exfoliated: thanks to its high recall of 98%, our method has an
extremely low rate of false negatives, i.e. of exfoliable materials that would be discarded by the model and
thus be missed in a search for interesting candidates. Yet, it helps in significantly reducing the number of
candidates that need to be sent to more accurate but expensive filtering steps (e.g. by computing binding
energies using DFT), thus significantly lowering the total workflow computational cost. By means of a SHAP
analysis, we also provide an explanation of the most important features used by our model to determine
exfoliability. These include the maximum packing efficiency, the maximum number of unfilled s sates, the
chemical ordering and the mean of the periodic table row. Finally, in order to enable even non-expert fellows
to run our model and predict exfoliability of new materials, we implemented and deployed it as an online
web tool published on the Materials Cloud web platform, only requiring to provide the parent crystal
structure as input.

Data availability statement
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materialscloud:m4-7f.

Acknowledgments

This research was supported by the NCCR MARVEL, a National Centre of Competence in Research, funded
by the Swiss National Science Foundation (Grant No. 205602). The authors gratefully acknowledge Nicola
Marzari and Seyed Mohamad Moosavi for fruitful discussions, and Nicolas Mounet and Philippe Schwaller
for the initial implementation of the LowDimFinder code used in [37].

Code availability

The code for parsing, featurization of structures and data analysis is available free of charge on Github at
https://github.com/Mohammad-vahdat/Machine_learning_accelerated_identification_of_exfoliable_two_
dimensional_materials.

ORCID iDs

Mohammad Tohidi Vahdat https://orcid.org/0000-0003-1113-5894
Giovanni Pizzi  https://orcid.org/0000-0002-3583-4377

References

[1] Xia F, Wang H, Xiao D, Dubey M and Ramasubramaniam A 2014 Nat. Photon. 8 899–907
[2] Fiori G, Bonaccorso F, Iannaccone G, Palacios T, Neumaier D, Seabaugh A, Banerjee S K and Colombo L 2014 Nat. Nanotechnol.

9 768–79
[3] Saito Y, Nojima T and Iwasa Y 2016 Nat. Rev. Mater. 2 1–18
[4] Manzeli S, Ovchinnikov D, Pasquier D, Yazyev O V and Kis A 2017 Nat. Rev. Mater. 2 17033
[5] Mannix A J, Kiraly B, Hersam M C and Guisinger N P 2017 Nat. Rev. Chem. 1 1–15
[6] Vahdat M T, Campi D, Colonna N, Villalobos L F, Marzari N and Agrawal K V 2020 J. Mater. Chem. A 8 17747–55
[7] Vahdat M T, Campi D, Colonna N, Marzari N and Agrawal K V 2021 J. Phys. Chem. C 125 18896–904
[8] Radisavljevic B, Radenovic A, Brivio J, Giacometti V and Kis A 2011 Nat. Nanotechnol. 6 147–50
[9] Chhowalla M, Jena D and Zhang H 2016 Nat. Rev. Mater. 1 1–15
[10] Pizzi G, Gibertini M, Dib E, Marzari N, Iannaccone G and Fiori G 2016 Nat. Commun. 7 1–9
[11] Wang X, Han X, Zhang J, Wu X, Liu Y and Cui Y 2016 J. Am. Chem. Soc. 138 12332–5
[12] Deng D, Novoselov K S, Fu Q, Zheng N, Tian Z and Bao X 2016 Nat. Nanotechnol. 11 218–30
[13] Zhu Y, Peng L, Fang Z, Yan C, Zhang X and Yu G 2018 Adv. Mater. 30 1–19
[14] Varoon K et al 2012 Science 334 72–76
[15] Li H, Song Z, Zhang X, Huang Y, Li S, Mao Y, Ploehn H J, Bao Y and Yu M 2013 Science 342 95–98
[16] Peng Y, Li Y, Ban Y, Jin H, Jiao W, Liu X and Yang W 2014 Science 346 1356–9
[17] Butler S Z 2013 ACS Nano 7 2898–926
[18] Moore J E 2010 Nature 464 194–8
[19] Kou L, Wu S-C, Felser C, Frauenheim T, Chen C and Yan B 2014 ACS Nano 8 10448–54
[20] Walsh L A and Hinkle C L 2017 Appl. Mater. Today 9 504–15
[21] Marrazzo A, Gibertini M, Campi D, Mounet N and Marzari N 2018 Phys. Rev. Lett. 120 117701
[22] Nayak P K et al 2017 ACS Nano 11 4041–50
[23] Tran K et al 2019 Nature 567 71–75

8

https://doi.org/10.24435/materialscloud:m4-7f
https://doi.org/10.24435/materialscloud:m4-7f
https://github.com/Mohammad-vahdat/Machine_learning_accelerated_identification_of_exfoliable_two_dimensional_materials
https://github.com/Mohammad-vahdat/Machine_learning_accelerated_identification_of_exfoliable_two_dimensional_materials
https://orcid.org/0000-0003-1113-5894
https://orcid.org/0000-0003-1113-5894
https://orcid.org/0000-0002-3583-4377
https://orcid.org/0000-0002-3583-4377
https://doi.org/10.1038/nphoton.2014.271
https://doi.org/10.1038/nphoton.2014.271
https://doi.org/10.1038/nnano.2014.207
https://doi.org/10.1038/nnano.2014.207
https://doi.org/10.1038/natrevmats.2016.94
https://doi.org/10.1038/natrevmats.2016.94
https://doi.org/10.1038/natrevmats.2017.33
https://doi.org/10.1038/natrevmats.2017.33
https://doi.org/10.1038/s41570-016-0014
https://doi.org/10.1038/s41570-016-0014
https://doi.org/10.1039/D0TA03071F
https://doi.org/10.1039/D0TA03071F
https://doi.org/10.1021/acs.jpcc.1c03822
https://doi.org/10.1021/acs.jpcc.1c03822
https://doi.org/10.1038/nnano.2010.279
https://doi.org/10.1038/nnano.2010.279
https://doi.org/10.1038/natrevmats.2016.52
https://doi.org/10.1038/natrevmats.2016.52
https://doi.org/10.1038/ncomms12585
https://doi.org/10.1038/ncomms12585
https://doi.org/10.1021/jacs.6b07714
https://doi.org/10.1021/jacs.6b07714
https://doi.org/10.1038/nnano.2015.340
https://doi.org/10.1038/nnano.2015.340
https://doi.org/10.1002/adma.201706347
https://doi.org/10.1002/adma.201706347
https://doi.org/10.1126/science.1208891
https://doi.org/10.1126/science.1208891
https://doi.org/10.1126/science.1236686
https://doi.org/10.1126/science.1236686
https://doi.org/10.1126/science.1254227
https://doi.org/10.1126/science.1254227
https://doi.org/10.1021/nn400280c
https://doi.org/10.1021/nn400280c
https://doi.org/10.1038/nature08916
https://doi.org/10.1038/nature08916
https://doi.org/10.1021/nn503789v
https://doi.org/10.1021/nn503789v
https://doi.org/10.1016/j.apmt.2017.09.010
https://doi.org/10.1016/j.apmt.2017.09.010
https://doi.org/10.1103/PhysRevLett.120.117701
https://doi.org/10.1103/PhysRevLett.120.117701
https://doi.org/10.1021/acsnano.7b00640
https://doi.org/10.1021/acsnano.7b00640
https://doi.org/10.1038/s41586-019-0975-z
https://doi.org/10.1038/s41586-019-0975-z


Mach. Learn.: Sci. Technol. 3 (2022) 045014 M Tohidi Vahdat et al

[24] Alexeev E M 2019 Nature 567 81–86
[25] Pizzi G, Milana S, Ferrari A C, Marzari N and Gibertini M 2021 ACS Nano 15 12509–34
[26] Marrazzo A and Gibertini M 2022 npj 2D Mater. Appl. 6 30
[27] Frindt R F 1966 J. Appl. Phys. 37 1928–9
[28] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666–9
[29] Kaniyoor A, Baby T T and Ramaprabhu S 2010 J. Mater. Chem. 20 8467–9
[30] Coleman J N 2013 Acc. Chem. Res. 46 14–22
[31] Yi M and Shen Z 2015 J. Mater. Chem. A 3 11700–15
[32] Magda G Z, Petø J, Dobrik G, Hwang C, Biró L P and Tapasztó L 2015 Sci. Rep. 5 3–7
[33] Lebègue S, Björkman T, Klintenberg M, Nieminen R M and Eriksson O 2013 Phys. Rev. X 3 1–7
[34] Ashton M, Paul J, Sinnott S B and Hennig R G 2017 Phys. Rev. Lett. 118 1–6
[35] Cheon G, Duerloo K A N, Sendek A D, Porter C, Chen Y and Reed E J 2017 Nano Lett. 17 1915–23
[36] Choudhary K, Kalish I, Beams R and Tavazza F 2017 Sci. Rep. 7 5179
[37] Mounet N et al 2018 Nat. Nanotechnol. 13 246–52
[38] Haastrup S 2018 2D Mater. 5 1–36
[39] Zhou J et al 2019 Sci. Data 6 86
[40] Adhianto L, Banerjee S, Fagan M, Krentel M, Marin G, Mellor-Crummey J and Tallent N R 2010 Concurr. Comput. 22 685–701
[41] Ong S P, Richards W D, Jain A, Hautier G, Kocher M, Cholia S, Gunter D, Chevrier V L, Persson K A and Ceder G 2013 Comput.

Mater. Sci. 68 314–9
[42] Larsen A H et al 2017 J. Phys.: Condens. Matter. 29 273002
[43] Huber S P et al 2020 Sci. Data 7 1–18
[44] Lin X et al 2018 Nano Res. 11 6316–24
[45] Yang H, Zhang Z, Zhang J and Zeng X C 2018 Nanoscale 10 19092–9
[46] Frey N C, Wang J, Vega Bellido G I, Anasori B, Gogotsi Y and Shenoy V B 2019 ACS Nano 13 3031–41
[47] Han B 2020 Adv. Mater. 32 2000953
[48] Tang B, Lu Y, Zhou J, Chouhan T, Wang H, Golani P, Xu M, Xu Q, Guan C and Liu Z 2020Mater. Today 41 72–80
[49] Jin H, Zhang H, Li J, Wang T, Wan L, Guo H and Wei Y 2020 J. Phys. Chem. Lett. 11 3075–81
[50] Haraguchi Y, Igarashi Y, Imai H and Oaki Y 2022 Digit. Discovery 1 26–34
[51] Inorganic Crystal Structure Database (ICSD) (available at: http://www.fiz-karlsruhe.com/icsd.html)
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