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Abstract 
 

Finite deformation of an incompressible hollow Neo-Hookean material under anti-plane shear is 

investigated. The problem is converted from Cartesian co-ordinate to cylindrical polar co-ordinate since 

the problem is better handled in cylindrical polar co-ordinate. The analysis produces an elliptic second 

order partial differential equation which sought for Monge Method of solution for the determination of 

displacement and stresses. Boundary value conditions are set up in determining the contacts of integration 

involved in the solution. Finally a closed solution for the displacement and stresses at any cross section of 

the cylinder is achieved. 

 
 

Keywords: Anti-plane shear; displacement; deformed radius; shear stresses; monge mothed. 
 

1 Introduction 
 

The major problem in the analysis of solids deforming under anti-plane shear is difficult to achieve closed 

form solutions to the boundary value problems resulting from the analysis. Anti-plane shear deformations 

are one of the simplest classes of deformations that solids can undergo. Anti-plane shear involve 
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deformations of a cylindrical region in such a way that the displacement of each particle is parallel to the 

axial direction and independent of its axial coordinate. For the case of linear isotropic material like neo 

Hookean material, the strain energy function W =W(𝐼1) where 𝐼1 is the first principal invariant of the left 

Cauchy Green Strain tensor 𝐵 = 𝐹𝐹𝑇, F being the gradient of deformation. The absent of 𝐼2 in the strain 

energy function enables us to achieve analytic solution with the boundary value problem. When we have 

linear isotropic elasticity, the three dimensional equations can be reduced to a single two dimensional second 

order equation which is the axial component of the equation for a single unknown usually denoted as the out 

of plane displacement. Erumaka [1] in one of his works investigated on “finite anti plane shear deformation 

of a class of Ogden containing a line crack”. Erumaka and Onugha [2] analyzed “the stresses and 

deformation in a Neo-Hookean Half space deforming under Anti plane shear loading”. Polygnone and 

Horgan [3] worked on “Axisymmetric finite Anti plane shear of compressible Non linearly elastic circular 

Tubes”. Ejike and Erumaka [4] investigated “finite deformation of a rotating circular cylinder of Blatz-ko 

material”. Simmand and Warne [5] studied “Azimuthal shear of compressible non-linaerly Elastic 

orthotropic Tubes of finite Extent”. Horgan and Giuseppe [6] analyzed “Anti-plane shear deformations for 

non-Gaussian isotropic, incompressible hyperelastic materials”. Also Horgan and Giuseppe [7] extended 

“the work to Superposition of Generalized plane strain on anti-plane shear deformations in isotropic 

incompressible Hyperelastic”. Lejla [8] did work on “Two parametric analysis of Anti-plane shear 

deformation of a coated Elastic Half-Space” and Horgan [9] investigated on “Anti-plane shear deformations 

in linear and non linear solid mechanics”. Moreover Yang [10] investigated “Asymptotic solution to 

Axisymmetric indention of a compressible elastic thin film”. Darijani and Bahremen [11] used “polynomial 

hyperelastic models to obtain a closed form solution for analyses of rubbery solid circular cylinder”. Robert 

et al [12] with “the use of neo-Hookean and the Mooney–Rivlin models found the strain energy function for 

isotropic incompressible solids demonstrating a linear relationship between shear stress and amount of shear, 

and between torque and amount of twist, when subject to large simple shear or torsion deformations”. 

Merodio and Ogden [13] proposed “a new example of the solution to the finite deformation boundary value 

problem for a residually stressed elastic body and combined extension, inflation and torsion of a circular 

cylindrical tube subject to radial and circumferential residual stress. The isochoric deformation consisted of 

axial extension, radial inflation and superimposed torsion which is formulated for a general elastic strain 

energy function. Two simple strain energy functions incorporating radial stress were used and the integral 

were evaluated to give close form expressions for pressure, axial load and torsional movement. In addition to 

works done in elasticity on cylindrical materials”. Anani and Gholamhosein [14] worked on “spherical 

material, Stress analysis of thick pressure vessel composed of incompressible hyperelastic materials where 

Neo Hookean strain energy function was used to determine the stress and displacement of spherical shell 

that is axisymmetric radially deformed under internal and external pressure. Exact solutions were derived for 

stress and stretch in a thick hyperelastic spherical shell and the effect of the structure parameter for different 

examples was discussed”. Shearer et al. [15] analyzed “Torsional wave propagation in a pre-stressed 

hyperelastic annular circular cylinder”. 
 

Grine et al. [16] worked on Elastic machines, a non standard use of the axial shear of linear transversely 

isotropic elastic cylinders. Marco and Giuseppe [17] investigated on superposing plane strain on anti-plane 

shear deformations in a special class of fibre-reforced incompressible hyperelastic materials. In this present 

paper we sought for analytic solution using Monge method of solution for the determination of stresses and 

displacement across a hollow cylinder made of Neo-hookean material.  
  

2 Governing Equations 
 

Let the deformation of an isotropic, homogenous, incompressible, elastic material that takes the point 

(𝑋1, 𝑋2, 𝑋3) of the initial configuration to the point (𝑥1, 𝑥2, 𝑥3) of the deformed configuration in anti-plane 

shear be  
 

𝑥1 = 𝑋1 , 𝑥2 =  𝑋2 , 𝑥3 = 𝑋3 + 𝑤(𝑋1, 𝑋2)                      (1) 
 

𝑤(𝑋1, 𝑋2) is called out of plane displacement or anti-plane displacement and w depends continuously on 

𝑋1 𝑎𝑛𝑑 𝑋2 coordinates and twice differentiable function of 𝑋1 𝑎𝑛𝑑 𝑋2 at every point of D and its deformed 

image 𝐷∗. 
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The deformation gradient tensor F for equation (1) is given as  
  

F̅ = [
1 0 0
0 1 0

𝑤1 𝑤2 1
]                      (2) 

 

where 
𝜕𝑤

𝜕𝑋1
= 𝑤1 ,

𝜕𝑤

𝜕𝑋2
= 𝑤2   

 

 
 

Fig. 1. Anti-plane shear deformation 

 

The Left Cauchy-Green deformation gradient tensor B associated with (1) is given as 

 

B̅ = F̅F̅𝑇=[
1 0 0
0 1 0

𝑤1 𝑤2 1
] [

1 0 𝑤1

0 1 𝑤2

0 0 1

] 

 

B̅ = [

1 0 𝑤1

0 1 𝑤2

𝑤1 𝑤2 1 + 𝑤1
2 + 𝑤2

2
]                    (3)  

 

B̅−𝐼 = [

1 + 𝑤1
2 𝑤1𝑤2 −𝑤1

𝑤1𝑤2 1 + 𝑤1
2 −𝑤2

−𝑤1 −𝑤2 1

]  

    

B̅2 = B̅. B̅ = [

1 + 𝑤1
2 𝑤1𝑤2 𝑤1(2 + 𝑤1

2 + 𝑤2
2)

𝑤1𝑤2 1 + 𝑤2 𝑤2(2 + 𝑤1
2 + 𝑤2

2)

𝑤1(2 + 𝑤1
2 + 𝑤2

2) 𝑤2(2 + 𝑤1
2 + 𝑤2

2) 1 + 3𝑤1
2 + 3𝑤2

2 + 𝑤1
4+𝑤2

4 + 2𝑤1
2𝑤2

2

]  

  

The Left Cauchy-Green tensor is a second order tensor and symmetric, then it has three principal strain 

invariants 𝐼1 , 𝐼2 , and 𝐼3 given as 

 

I1 = trace B̅, I2= 
1

2
[(𝑡𝑟B̅)2 −  𝑡𝑟B̅2]= trace B̅−𝐼 ,  I3= det B̅  

    

𝐼1 = 3 + 𝑤1
2 + 𝑤2

2, 𝐼2 = 3 + 𝑤1
2 + 𝑤2

2 = 𝐼1 , 𝐼3 = 1                (4) 

  

The third strain invariant shows that the material is incompressible, since 𝐼3 = 1 

 

 

𝑥3 

𝑥1 

𝑥2 
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Using the Neo-Hookean strain energy function material which is given by  

 

𝑊 =
𝜇

2
(𝐼1 − 3)                       (5)  

where 𝜇 is the shear modulus  

 

𝑊1 =
𝜕𝑊

𝜕𝐼1
 = 

𝜇

2
 𝑊2 =

𝜕𝑊

𝜕𝐼2
= 0                    (6) 

 

3 Stress Tensor 𝝉 
 

The stress tensor for incompressible material is given by 

 

𝜏 = −𝜌𝐼 + 2𝑊1𝐵 − 2𝑊2𝐵−1                     (7) 

 

where  is the unit tensor and 𝜌 is the hydrostatic pressure  

 

𝜏 = [

−𝜌 0 0
0 −𝜌 0
0 0 −𝜌

] + [

𝜇 0 𝜇𝑤1

0 𝜇 𝜇𝑤2

𝜇𝑤1 𝜇𝑤2 𝜇 + 𝜇𝑤1
2 + 𝜇𝑤2

2
] 

 

Simplifying further, we have 

 

𝜏 = [

−𝜌 + 𝜇 0 𝜇𝑤1

0 −𝜌 + 𝜇 𝜇𝑤2

𝜇𝑤1 𝜇𝑤2 −𝜌 + 𝜇 + 𝜇𝑤1
2 + 𝜇𝑤2

2
]                  (8)  

   

Representing stress tensor in Cartesian co-ordinate, form we have 

 

𝜏 = (

𝜏𝑥𝑥 𝜏𝑥𝑦 𝜏𝑥𝑧

𝜏𝑦𝑥 𝜏𝑦𝑦 𝜏𝑦𝑧

𝜏𝑧𝑥 𝜏𝑧𝑦 𝜏𝑧𝑧

)                      (9) 

 

Comparing (8) and (9) we obtain 

 

𝜏𝑥𝑥 = −𝜌 + 𝜇                  (10a) 

 

𝜏𝑥𝑦 = 𝜏𝑦𝑥 = 0                   (10b) 

 

𝜏𝑥𝑧 = 𝜏𝑧𝑥 =  𝜇𝑤1                  (10c)  

     

𝜏𝑦𝑦 = −𝜌 + 𝜇                   (10d) 

 

𝜏𝑦𝑧 = 𝜏𝑧𝑦 =  𝜇𝑤2                  (10e)  

     

𝜏𝑧𝑧 = −𝜌 + 𝜇 + 𝜇𝑤1
2 + 𝜇𝑤2

2                  (10f)  

    

Here we need to transform the field equations to cylindrical polar coordinates (𝑟, 𝜃, 𝑧) since the problem is 

better handled in cylindrical polar co-ordinates. 

 

The Cartesian co-ordinate is related to cylindrical polar co-ordinate by the relation given below 

 

𝑋1 = 𝑟𝑐𝑜𝑠𝜃,  𝑋2 = 𝑟𝑠𝑖𝑛𝜃 , 𝑋3 = 𝑍 
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𝑟 = (𝑋1
2 + 𝑋2

2)
1

2 𝜃 = 𝑡𝑎𝑛−1 (
𝑋2

𝑋1

) 

 

That is from w(𝑋1,  𝑋2) 𝑡𝑜 𝑤 = 𝑤(𝑟, 𝜃) 

 

From total differentiation 

 

𝜕𝑤(𝑟, 𝜃) =
𝜕𝑤(𝑟, 𝜃)

𝜕𝑟
𝜕𝑟 +

𝜕𝑤(𝑟, 𝜃)

𝜕𝜃
𝜕𝜃 

 

since 𝑟 and 𝜃 are functions of 𝑋1 and 𝑋2 then we have 

 
𝜕𝑤(𝑟,𝜃)

𝜕𝑋1
=

𝜕𝑤(𝑟,𝜃)

𝜕𝑟

𝜕𝑟

𝜕𝑋1
+

𝜕𝑤(𝑟,𝜃)

𝜕𝜃

𝜕𝜃

𝜕𝑋1
                   (11) 

 
𝜕𝑟

𝜕𝑋1
= 𝑐𝑜𝑠𝜃 and 

𝜕𝜃

𝜕𝑋1
=

−𝑠𝑖𝑛 𝜃

𝑟
 

 

Then (11) becomes 

 

𝑤1 =  𝑤𝑟𝑐𝑜𝑠𝜃 − 𝑤𝜃
𝑠𝑖𝑛 𝜃

𝑟
                   (12) 

 

Squaring both sides of (12) 

 

(𝑤1)2 =  cos2𝜃(𝑤𝑟)2 −
2

𝑟
𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝜃𝑤𝑟𝑤𝜃 +

1

𝑟2  sin2𝜃(𝑤𝜃)2  

  
𝜕𝑤(𝑟,𝜃)

𝜕𝑋2
=

𝜕𝑤(𝑟,𝜃)

𝜕𝑟

𝜕𝑟

𝜕𝑋2
+

𝜕𝑤(𝑟,𝜃)

𝜕𝜃

𝜕𝜃

𝜕𝑋2
                   (13) 

 
𝜕𝑟

𝜕𝑋2

= 𝑠𝑖𝑛𝜃 𝑎𝑛𝑑 
𝜕𝜃

𝜕𝑋2

=
𝑐𝑜𝑠𝜃

𝑟
 

 

𝑤2 = 𝑤𝑟𝑠𝑖𝑛𝜃 + 𝑤𝜃
𝑐𝑜𝑠𝜃

𝑟
                    (14) 

 

Squaring both sides of (14) 

 

(𝑤2)2 =  sin2𝜃(𝑤𝑟)2 +
2

𝑟
𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝜃𝑤𝑟𝑤𝜃 +

1

𝑟2  cos2𝜃(𝑤𝜃)2  

 

From (10f) that is 𝜏𝑧𝑧 = −𝜌 + 𝜇 + 𝜇𝑤1
2 + 𝜇𝑤2

2 

 

−𝜌 + 𝜇(1 + (𝑤1)2 + (𝑤2)2)

= −𝜌 + 𝜇(1 + cos2𝜃(𝑤𝑟)2 −
2

𝑟
𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝜃𝑤𝑟𝑤𝜃 +

1

𝑟2
 sin2𝜃(𝑤𝜃)2 + sin2𝜃(𝑤𝑟)2

+
2

𝑟
𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝜃𝑤𝑟𝑤𝜃 +

1

𝑟2
cos2𝜃(𝑤𝜃)2)  

−𝜌 + 𝜇(1 + (𝑤1)2 + (𝑤2)2) = −𝜌 + 𝜇(1 + (𝑤𝑟)2 +
1

𝑟2
(𝑤,𝜃)2) 

 

using the value of 𝑤1,  𝑤2 , (𝑤1)2 𝑎𝑛𝑑 (𝑤2)2 in equation (10) we obtain 

 

𝜏𝑥𝑥 = 𝜏𝑦𝑦 = 𝜇 − 𝜌    

 

𝜏𝑥𝑦 = 𝜏𝑦𝑥 , = 0 



 
 
 

Ogazie; Asian J. Pure Appl. Math., vol. 6, no. 1, pp. 77-87, 2024; Article no.AJPAM.1469 

 

 

 

82 
 
 

𝜏𝑥𝑧 = 𝜏𝑧𝑥 = 𝜇(𝑐𝑜𝑠𝜃𝑤𝑟 −
𝑠𝑖𝑛 𝜃

𝑟
𝑤𝜃) 

𝜏𝑦𝑧 = 𝜏𝑦𝑧 = 𝜇(𝑠𝑖𝑛𝜃𝑤𝑟 +
𝑐𝑜𝑠𝜃

𝑟
𝑤𝜃) 

 

𝜏𝑧𝑧 = 𝜇(1 + ((𝑤𝑟)2 +
1

𝑟2 (𝑤𝜃)2)) − 𝜌 

 
The coordinate transformation between cylindrical polar coordinate and Cartesian coordinate is given by  

 
𝜏∗ = 𝑄𝜏𝑄𝑇                     (15) 

 
where Q is an orthogonal transformation tensor and 𝑄𝑇  is the transpose. Then (15) becomes 

 

𝜏∗ = (
𝑐𝑜𝑠𝜃 𝑠𝑖𝑛𝜃 0

−𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃 0
0 0 1

) (

𝜏𝑥𝑥 𝜏𝑥𝑦 𝜏𝑥𝑧

𝜏𝑦𝑥 𝜏𝑦𝑦 𝜏𝑦𝑧

𝜏𝑧𝑥 𝜏𝑧𝑦 𝜏𝑧𝑧

) (
𝑐𝑜𝑠𝜃 −𝑠𝑖𝑛𝜃 0
𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃 0

0 0 1
) 

 

𝜏∗ = (

𝑐𝑜𝑠𝜃𝜏𝑥𝑥 + 𝑠𝑖𝑛𝜃𝜏𝑦𝑥 𝑐𝑜𝑠𝜃𝜏𝑥𝑦 + 𝑠𝑖𝑛𝜃𝜏𝑦𝑦 𝑐𝑜𝑠𝜃𝜏𝑥𝑧 + 𝑠𝑖𝑛𝜃𝜏𝑦𝑥

−𝑠𝑖𝑛𝜃𝜏𝑥𝑥 + 𝑐𝑜𝑠𝜃𝜏𝑦𝑥 −𝑠𝑖𝑛𝜃𝜏𝑥𝑦 + 𝑐𝑜𝑠𝜃𝜏𝑦𝑦 −𝑠𝑖𝑛𝜃𝜏𝑥𝑧 + 𝑐𝑜𝑠𝜃𝜏𝑦𝑧

𝜏𝑧𝑥 𝜏𝑧𝑦 𝜏𝑧𝑧

) (
𝑐𝑜𝑠𝜃 −𝑠𝑖𝑛𝜃 0
𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃 0

0 0 1
) (16)  

 
using (10b) in equation (16), we obtain 

 

 𝜏∗ = (

𝑐𝑜𝑠2𝜃𝜏𝑥𝑥 + 𝑠𝑖𝑛2𝜃𝜏𝑦𝑦 −𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝜃𝜏𝑥𝑦 + 𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝜃𝜏𝑦𝑦 𝑐𝑜𝑠𝜃𝜏𝑥𝑧 + 𝑠𝑖𝑛𝜃𝜏𝑦𝑧

−𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝜃𝜏𝑥𝑥 + 𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝜃𝜏𝑦𝑦 𝑠𝑖𝑛2𝜃𝜏𝑥𝑥 + 𝑐𝑜𝑠2𝜃𝜏𝑦𝑦 −𝑠𝑖𝑛𝜃𝜏𝑥𝑧 + 𝑐𝑜𝑠𝜃𝜏𝑦𝑥

𝑐𝑜𝑠𝜃𝜏𝑧𝑥 + 𝑠𝑖𝑛𝜃𝜏𝑧𝑦 −𝑠𝑖𝑛𝜃𝜏𝑧𝑥 + 𝑐𝑜𝑠𝜃𝜏𝑧𝑦 𝜏𝑧𝑧

)    (17) 

 
In components form of the polar cylindrical material 

 

𝜏∗ = (

𝜏𝑟𝑟 𝜏𝑟𝜃 𝜏𝑟𝑧

𝜏𝜃𝑟 𝜏𝜃𝜃 𝜏𝜃𝑧

𝜏𝑧𝑟 𝜏𝑧𝜃 𝜏𝑧𝑧

)                     (18) 

 
Comparing (17) and (18), we have 

 
𝜏𝑟𝑟 = 𝑐𝑜𝑠2𝜃𝜏𝑥𝑥 + 𝑠𝑖𝑛2𝜃𝜏𝑦𝑦                (19a) 

 
𝜏𝑟𝜃 = 𝜏𝜃𝑟=−𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝜃𝜏𝑥𝑦 + 𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝜃𝜏𝑦𝑦                (19b) 

 
𝜏𝜃𝜃 = 𝑠𝑖𝑛2𝜃𝜏𝑥𝑥 + 𝑐𝑜𝑠2𝜃𝜏𝑦𝑦                (19c) 

 
𝜏𝑟𝑧 = 𝜏𝑧𝑟 =  𝑐𝑜𝑠𝜃𝜏𝑥𝑧 + 𝑠𝑖𝑛𝜃𝜏𝑦𝑧                (19d) 

 
𝜏𝑧𝜃 = −𝑠𝑖𝑛𝜃𝜏𝑧𝑥 + 𝑐𝑜𝑠𝜃𝜏𝑧𝑦               (19e) 

 
𝜏𝑧𝑧 = 𝜏𝑧𝑧                     (19f) 

 
Using equation (10) in (19), we have 

 
𝜏𝑟𝑟 = 𝜇 − 𝜌                    (20a) 
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𝜏𝜃𝜃 = 𝜇 − 𝜌                    (20b) 

 
𝜏𝑟𝜃 = 𝜏𝜃𝑟 = 𝑜                   (20c) 

 

𝜏𝑟𝑧 = 𝜏𝑧𝑟 = 𝜇𝑤𝑟                  (20d)  

 

𝜏𝜃𝑧 = 𝜏𝑧𝜃 =
𝜇

𝑟
𝑤𝜃                   (20e) 

 

𝜏𝑧𝑧 = 𝜇 ((𝑤𝑟)2 +
1

𝑟2 (𝑤𝜃)2) − 𝜌                 (20f) 

 

4 Equation of Equilibrium 
 

The equilibrium equation is given by  

Div𝜏∗=0                    (21) 
 

In component form, we have 
 

𝜕𝜏𝑟𝑟

𝜕𝑟
+

1

𝑟

𝜕𝜏𝑟𝜃

𝜕𝜃
+

𝜕𝜏𝑟𝑧

𝜕𝑧
+

1

𝑟
(𝜏𝑟𝑟 − 𝜏𝜃𝜃) + 𝐵𝑟 = 0                (22a) 

 
𝜕𝜏𝜃𝑟

𝜕𝑟
+

1

𝑟

𝜕𝜏𝜃𝜃

𝜕𝜃
+

𝜕𝜏𝜃𝑧

𝜕𝑧
+

2

𝑟
𝜏𝑟𝜃 + 𝐵𝜃 = 0                  (22b) 

 
𝜕𝜏𝑧𝑟

𝜕𝑟
+

1

𝑟

𝜕𝜏𝑧𝜃

𝜕𝜃
+

𝜕𝜏𝑧𝑧

𝜕𝑧
+

1

𝑟
𝜏𝑧𝑟 + 𝐵𝑧 = 0                 (22c) 

 

where 𝐵𝑟 , 𝐵𝜃  𝑎𝑛𝑑 𝐵𝑧  are components of the body forces in r, 𝜃 and z vectors respectively. The non-zero 

component of equilibrium equation is the axial component given by 
 

𝜕𝜏𝑧𝑟

𝜕𝑟
+

1

𝑟

𝜕𝜏𝑧𝜃

𝜕𝜃
+

𝜕𝜏𝑧𝑧

𝜕𝑧
+

1

𝑟
𝜏𝑧𝑟 + 𝐵𝑧 = 0                   (23) 

 

In the absence of body force (23) reduces to  
 

𝜕𝜏𝑧𝑟

𝜕𝑟
+

1

𝑟

𝜕𝜏𝑧𝜃

𝜕𝜃
+

𝜕𝜏𝑧𝑧

𝜕𝑧
+

1

𝑟
𝜏𝑧𝑟 = 0 

 

where 
𝜕𝜏𝑧𝑟

𝜕𝑟
= 𝜇𝑤𝑟𝑟 ,

𝜕𝜏𝑧𝜃

𝜕𝜃
=

𝜇

𝑟
𝑤𝜃𝜃, 

𝜕𝜏𝑧𝑧

𝜕𝑧
= 0  

 

we obtain the equilibrium equation as 
 

𝜇𝑤𝑟𝑟 +
𝜇

𝑟
𝑤𝑟 +

𝜇

𝑟2
𝑤𝜃𝜃 = 0 

 

𝜇(𝑤𝑟𝑟 +
1

𝑟
𝑤𝑟 +

1

𝑟2 𝑤𝜃𝜃) = 0                  (24)  

 

where 𝜇 ≠ 0 

then equation (14) becomes 

 

𝑤𝑟𝑟 +
1

𝑟
𝑤𝑟 +

1

𝑟2 𝑤𝜃𝜃 = 0  

 

𝑟2𝑤𝑟𝑟 + 𝑟𝑤𝑟 + 𝑤𝜃𝜃 = 0    

 

𝑟2𝑤𝑟𝑟 + 𝑤𝜃𝜃 = −𝑟𝑤𝑟                    (25) 
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The standard monge’s equation is:  

 

𝑅∗𝑟∗ + 𝑆𝑠 + 𝑇𝑡∗ = 𝑉                     (26) 

 

Comparing (27) and (28) we have 

 

𝑅∗ = 𝑟2, 𝑇 = 1, 𝑆 = 0, 𝑉 = −𝑟𝑤𝑟                   (27) 
 

Any equation that satisfies (26) must satisfy  
 

𝑅∗𝑑𝑝𝑑𝑡 + 𝑇𝑑𝑞𝑑𝑟 − 𝑉𝑑𝑟𝑑𝑡 = 0                   (28a) 
 

𝑅∗(𝑑𝑡)2 − 𝑆𝑑𝑟𝑑𝑡 + 𝑇(𝑑𝑡)2 = 0                 (28b) 
 

Then (28a) and (28b) becomes  
 

𝑟2𝑑𝑝𝑑𝜃 + 𝑑𝑞𝑑𝑅 + 𝑟𝑤𝑟𝑑𝑟𝑑𝜃 = 0                 (29a) 
 

𝑟2(𝑑𝜃)2 + (𝑑𝑟)2 = 0                  (29b) 
 

From (29b) , we have  
 

𝑑𝑟 = ±√−𝑟2(𝑑𝜃)2 =±𝑖𝑟𝑑𝜃                   (30) 
 

Substituting (30) in (29a), we obtain 
 

𝑟2𝑑𝑝𝑑𝜃+ 𝑖𝑟𝑑𝑞𝑑𝜃 +  𝑟𝑤𝑟𝑑𝑟𝑑𝜃 = 0                (31a) 
 

𝑟2𝑑𝑝𝑑𝜃 −  𝑖𝑟𝑑𝑞𝑑𝜃 +  𝑟𝑤𝑟𝑑𝑟𝑑𝜃 = 0                (31b) 
 

Adding (31a) and (31b) gives 
 

2𝑟2𝑑𝑝𝑑𝜃 + 2 𝑟𝑤𝑟𝑑𝑟𝑑𝜃 = 0  
 

Factoring 𝑑𝜃, 𝑤ℎ𝑒𝑟𝑒 𝑑𝜃 ≠ 0 𝑡ℎ𝑒𝑛 𝑤𝑒 ℎ𝑎𝑣𝑒 
 

𝑟2𝑑𝑝 +  𝑟𝑤𝑟𝑑𝑟 = 0 
 

Let 𝑝 = 𝑤𝑟 where 𝑤 = 𝑤(𝑟, 𝜃) 

𝑟2𝑑𝑝 = −𝑟𝑝𝑑𝑟 
 

∫
𝑑𝑝

𝑝
= − ∫

𝑑𝑟

𝑟
 

 

𝐼𝑛𝑝 = −𝐼𝑛𝑟 + 𝐼𝑛𝐻(𝜃) 
 

𝑤ℎ𝑒𝑟𝑒 𝐻(𝜃) > 0 and 𝜃 ≥ 0 
 

𝑝 =
𝐻(𝜃)

𝑟
 

 

𝑤𝑟 =
𝐻(𝜃)

𝑟
 

 

𝜕𝑤

𝜕𝑟
=

𝐻(𝜃)

𝑟
 

 

𝑤 =  𝐻(𝜃)𝐼𝑛𝑟 + 𝐹(𝜃)                      (32) 
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where 𝑟 > 0 

 

5 Use of Boundary Conditions 
 

𝑤(𝑎, 𝜃) = 0, 𝑤(𝑏, 𝜃) = 𝑘𝑏𝑠𝑖𝑛𝜃                    (33) 

 

where 𝑘 is a constant which is the magnitude of shear 

 

Using equation (33) in (32) gives (34) and (35) 

 

0 =  𝐻(𝜃)𝐼𝑛𝑎 + 𝐹(𝜃)                   (34)  

 

𝑘𝑏𝑠𝑖𝑛𝜃 =  𝐻(𝜃)𝐼𝑛𝑏 + 𝐹(𝜃)                   (35) 

 

Solving for 𝐹(𝜃) and 𝐻(𝜃), we obtain  

 

𝐻(𝜃) =
𝑘𝑏𝑠𝑖𝑛 𝜃 

𝐼𝑛(𝛼)
 and 𝐹(𝜃) =

−𝑘𝑏𝑠𝑖𝑛𝜃

𝐼𝑛𝛼
𝐼𝑛𝑎                 (36) 

 

where 𝛼 =
𝑏

𝑎
 and 𝛼 > 0 𝑠𝑖𝑛𝑐𝑒 𝑏 > 𝑎 

 

then (32) gives 

 

𝑤(𝑟, 𝜃) =
𝜆𝑠𝑖𝑛𝜃

𝐼𝑛𝛼
 𝐼𝑛

𝑟

𝑎
                     (37) 

 

Equation (37) satisfies the above boundary conditions given in equation (33). 

 

𝑤𝑟 =
𝜆𝑠𝑖𝑛𝜃

𝑟𝐼𝑛𝛼
 

 

𝑤𝛩 =
𝜆𝑐𝑜𝑠𝜃

𝐼𝑛𝛼
 𝐼𝑛

𝑟

𝑎
 

where 𝑘𝑏 = 𝜆 

The stress components become  

 

𝜏𝑟𝑟 = 𝜏𝜃𝜃 = 𝜇 − 𝜌 

 

𝜏𝑟𝜃 = 𝜏𝜃𝑟 = 𝑜 

 

𝜏𝑟𝑧 = 𝜏𝑧𝑟 = 𝜇
𝜆𝑠𝑖𝑛𝜃

𝐼𝑛𝛼

1

𝑟
 

 

𝜏𝜃𝑧 = 𝜏𝑧𝜃 =
𝜇

𝑟

𝜆𝑐𝑜𝑠𝜃

𝐼𝑛𝛼
 𝐼𝑛

𝑟

𝑎
 

 

𝜏𝑧𝑧 = 𝜇 ((
𝜆𝑠𝑖𝑛𝜃

𝐼𝑛𝛼

1

𝑟
)2 +

1

𝑟2
(
𝜆𝑐𝑜𝑠𝜃

𝐼𝑛𝛼
 𝐼𝑛

𝑟

𝑎
)2) − 𝜌 

 

6 Conclusion 
 

This present work establish an exact analytical solution for the angular displacement and stresses for the 

anti-plane shear deformation of an incompressible Hollow cylinder made of Neo-Hookean material. 
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Equation (37) gives the displacement. Finally, we obtain the components of the stress at any cross section of 

the cylinder made of Neo-Hookean material. 
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