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ABSTRACT 
 

Hyperspectral ground measurements can be used for giving timely information about crops in 
specific areas and thereby providing valuable data for decision makers. In the current study, ASD 
field Spec4 spectroradiometer were used to monitor the variation and differences of the summer 
crop vegetation cover reflectance. Furthermore, two hyperspectral vegetation indices calculated 
from the data represented by Normalized Difference Vegetation Index NDVIHS and Soil Adjusted 
Vegetation Index SAVIHS in east Nile Delta, Egypt. The results obtained showed that the mid- 
season stage had the highest values of calculated VI’s that return to the high reflection from the 
plant canopy at the near infrared and high absorption at the red wavelength, also the initial growth 
stage VI’s values lower than the mid- season stage and higher than the late season. In addition, 
the analysis of spectral signatures differences showed the late growth stage was the highest 
reflection overall the visible range (blue, green and red). Results of Tukey’s HSD showed that blue, 

Short Research Article  



 
 
 
 

El-Sharkawy et al.; JAERI, 8(3): 1-10, 2016; Article no.JAERI.20623 
 
 

 
2 
 

Red and NIR spectral zones are more sufficient in the monitoring differences between peanut 
growth stages than green, SWIR-1 and SWIR-2 spectral zones. 
 

 
Keywords: Peanut reflectance; hyperspectral indices; arid land. 
 
1. INTRODUCTION 
 
Food security is the backbone of the developing 
countries. Egypt still one of the most importing 
food production in the entire world, to solve this 
problem we have to increase crop yield. High 
yields achievement requires an understanding of 
main factors that affect yield, such as improving 
soil quality, managing irrigation water and 
nitrogen fertilizers application [1]. Farming 
system is included numerous components, 
however the varieties that exist inside of a field 
can be abridged in three classes of variety; 
namely natural variations like soil variation and 
topography; random variations such as rainfall 
variation and managed variations such as the 
seed or fertilizer application [2]. Peanut              
(Arachis hypogaea L.) is an important food                
crop in summer season. Egypt is a major               
peanut exporting country with planted area at 0.6 
million hectares and estimated production about 
0.2 million tons for 2015/2016 production year 
[3]. One of the most important retrieved 
information from remote sensing is vegetation 
indices, many studies were applied for 
monitoring reflectance of strategic summer and 
winter crops; however few reviews were                 
applied in peanut reflectance. Quantitative 
estimations of plant biochemical and biophysical 
variables can be accomplished by the estimation 
of reflected radiation from plant leaves and 
canopies [4,5,6,7]. [8] suggested a new 12 
hyperspectral narrow-wavebands for predicting 
some of the plant biophysical components       
based on ground level reflectivity measurements 
of soybeans, potato, cotton, corn, and               
sunflower gathered using a field 
spectroradiometer having 490 hyperspectral 
narrow-wavebands between 350 and                           
1050 nanometers. The waveband centers                  
and the waveband widths are: λ 1 = 0.495 µ m (∆ λ 

1 = 0.030 µ m), λ 2 = 0.525 µ m (∆ λ 2 = 0.020 µ m), λ 
3 = 0.550 µ m (∆ λ 3 = 0.020 µ m), λ 4 = 0.568 µ m (∆ 
λ 4 = 0.010 µ m), λ 5 = 0.668 µ m (∆ λ 5 = 0.004 µ m), 
λ 6 = 0.682 µ m (∆ λ 6 = 0.004 µ m), λ 7 = 0.696 µ m 
(∆ λ 7 = 0.004 µ m), λ 8 = 0.720 µ m (∆ λ 8 = 0.010 µ 
m), λ 9 = 0.845 µ m (∆ λ 9 = 0.070 µ m), λ 10 = 0.920 
µ m (∆ λ 10 = 0.020 µ m), λ 11 = 0.982 µ m                            
(∆ λ 11 = 0.030 µ m), and λ 12 = 1.025 µ m                     
(∆ λ 12 = 0.010 µ m). 

The principle behind NDVI is that red band where 
chlorophyll causes considerable absorption of 
incoming sunlight, whereas the near infrared 
(NIR) band where a plant's spongy-mesophyll 
leaf structure creates considerable reflectance. 
NDVI values vary according to the growth stage 
[9,10], also according to [11] the Soil-Adjusted 
Vegetation Index (SAVI) is the best index utilized 
to describe the arid areas or parched vegetation 
areas, knowing the sparse distribution of 
vegetation between bared soil patches. Soil is a 
complex system that is relevant for the Earth 
System functioning besides its major role in food 
production [12-19]. Hyperspectral remote 
sensing is a precision agricultural tool which can 
be utilized to enhance the crop production [20]. 
In terms of associating with plant biochemical 
information hyperspectral indices or narrow-band 
indices were appeared to be more exact than 
broad band indices, due to small physiological 
changes are usually detectable at particular 
wavelengths [21]. Also when the soil is damaged 
the recovery is very expensive, and precision 
agriculture can help to avoid this 
mismanagement [22-27]. Remote sensing 
imagery with soil data analyses allowed for the 
identification of spatial pattern of crop growth 
variability [28]. Utilizing vegetation indices 
calculated from remote sensing data such as the 
Normalized Deference Vegetation Index (NDVI), 
has been examined to estimate crop coefficients 
within the field and also examined for regional 
scales [29 and 30]. [31] Indicated that using the 
soil suitability model and a sufficient numerous of 
field observations within each strata or class, an 
acceptable accuracy and good spatial distribution 
of the suitability classification was achieved. 
Furthermore, using automated variable rate 
sprayers combined with site-specific 
management for herbs infection areas are greatly 
responsible for lowering cost of herbicides and 
decreasing environmental impact, through 
applying the least amount of herbicides 
necessary. According to [32] physiological 
spectral indices of growth stages have significant 
correlations between varied classes productivity 
and similarity of spectral measures, referring to 
similarity between the samples' spectra 
decreases as the pigments concentration in the 
plant leaves increases, which offer as a precision 
agriculture tool to manage crop variations within 
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fields that can affect crop yield. [32] also 
indicated that in the range of 350–1000 nm, the 
red-edge (705-750 nm) is the most sensitive 
spectral region for assessing vegetation healthy, 
for peanut spectral. However, the degree of 
significance is dictated by the particular band 
arrangement formation of the hyperspectral 
sensor as well as the crop and the results of 
Tukey’s HSD showed that blue, green and NIR 
spectral zones are more sufficient in the 
discrimination between peanut growth stages 
than red, SWIR-1 and SWIR-2 spectral zones. 
Furthermore, electromagnetic peanut crop 
mapping was successfully employed to simulate 
vegetation healthy effect on canopy structure and 
final yield.  
 
Many previous studies have tested similarity 
between the seasonal trend of different 
vegetation indices and annual crops transpiration 
[33-39]. This study will focus on highlighting the 
variation and differences in one of the major 
summer crop vegetation cover reflectance using 
hyperspectral ground measurements of ASD field 
Spec4 spetroradiometer.  
 
2. MATERIALS AND METHODS 
 
2.1 Study Area 

 
The study area is located in Ismailia governorate 
in east Nile Delta, Egypt. The area is bounded by 
30o 29′ 00′′ N and 30o 30′ 00′′ N latitude and 31o 
56′ 00′′ E and 31o 57′ 00′′ E longitude. The study 
area located in arid land and the region climate is 
arid Mediterranean type with an average annual 
precipitation of about 20 mm and temperature 18 
co. The whole area of the current study 
represented by one pivot within area about 67 
hectares, cultivated with peanut crop and 
irrigated using Ismailia canal branched from Nile 
River with Total Dissolved Salts (TDS) of 544 
mg.L-1. The investigation was applied on 63 
hectares, shown in Fig. 1. Generally the soil in 
the study area is sandy clay loam, relatively 
moderate permeable.  
 
2.2 Field Data 
 
The data collected for 8 samples systematic 
randomly distributed to cover the variation of 
crop overall the investigated area. Samples 
collected with interval of 30 days starting from 60 
days after plantation representing initial growth 
stage, 90 days after plantation representing the 

mid-season growth stage and 120 days after 
plantation represents the late season growth 
stage. 
 

 
 

Fig. 1. Location of study area Landsat 8 
image in false color composition 

 
Analytical Spectrum Device (ASD Field Spec) is 
hyper-spectral sensor used to measure the 
reflection of different terrestrial targets such as 
peanut or other plants in a wide optical spectral 
range (Visible range– Near Infrared range – 
Short Wave Infrared range) starting from                     
350 nm to 2500 nm with one nanometer (nm) 
sampling interval output spectral data.                         
The sampling interval is different at 350-1050 nm 
and 1000-2500 nm 1.4 nm and 2 nm 
respectively. These are the intervals which the 
device is capturing the reflectance the device 
itself making an interpolation for the data 
automatically and gives the final data output               
with 1 nm interval for the all spectrum range                 
350-2500 nm. Hyperspectral data of handheld 
spectroradiometer reflectance measurements 
Both of NDVI developed by [7] Equation 1 as the 
most known and widely used vegetation index. 
On the other hand, to account for changes                     
in the soil and detecting the land optical 
characteristics, soil adjusted indices minimizing 
the background influence had developed. The 
leading index in such improvement is the SAVI 
[11] which includes a canopy background 
adjustment factor L using narrow bands, SAVI 
Equation 2. 
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2.3 Comparing Standard Deviations from 
Several Populations 

 
Analysis of variance (ANOVA) methods are for 
comparing means from several populations or 
processes. While similar methods are 
occasionally used for comparing several 
standard deviations (sd), usually by using the 
natural logarithm of sample variances as the 
response variable. When using ANOVA models 
with collected data from designed experiments 
for statistical analysis, an important assessment 
is given by the F-max test of the assumption of 
constant standard deviations (sd) across the 
combinations of k factor-level. The F-max test is 
utilized to test the theories [40] Equation 3. 
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2.4 Multiple Comparisons 
 
Multiple comparisons of means frequently involve 
preselected comparisons that address specific 
questions. For example, an researcher has 
interest in the existence of overall experimental 
effects; consequently, the summaries provided 
by an ANOVA table are of secondary interest, 
perhaps only to provide an estimate of the 
experimental error variance. In contrast, 
researchers in many experimental settings do not 
know which factor effects may turn out to be 
measurably or statistically noteworthy. If so, the 
F-statistics in an ANOVA table produce the main 

information source on statistically noteworthy 
factor or significant variable impacts. Although, 
after an F-test in an ANOVA table has shown 
significance, an experimenter usually wishes to 
conduct further examinations to figure out which 
sets of means or which groups of means are 
significantly different from one another [40]. 
Tukey’s significant difference procedure (TSD) is 
a similar technique to Fisher’s LSD procedure. It 
differs mainly in the range of the k averages, 
furthermore the critical point calculated from the 
range statistic distribution, not obtained from the 
t-distribution [40]. Moreover, if there are a set of 
means (A, B, C, D), which can be ranked in the 
order A > B > C > D, basically not the whole 
possible comparisons between the groups of 
means need be examined using Tukey's test. 
 

3. RESULTS 
 
Fig. 2 show the results of the collected 
hyperspectral data measurements at 30 cm 
height above plant canopy at each growth stage. 
The means of spectral measurements, of Peanut 
crop, through three stage growth, were 
processed to illustrate the peanut spectral 
behavior through three stage growth. Moreover, 
the calculation of the averaged spectra of peanut 
crop samples enabled to compare the spectral 
behavior through the different growth stages and 
test the  significance of spectral variation, 
through spectrum of 350- 2500, of peanut's 
different growth stages. The graphical 
presentation of the spectral means indicated that 
there are significant differences at certain 
spectrum wavelength and similar at other one. 

 

 
 

Fig. 2. Mean hyper-spectral signature of peanut cro p for each growth stages 2015 season 

(3)
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The data revealed as shown in Tables 1, 2, 3 
and 4 as well as Figs. 3, 4 and 5 show that              
the differences between all growth stages 
reflectance in visible wavelength 350-450 nm, 
450-550 nm and 550-700 nm that represent blue, 
green and red respectively were significantly 
different. The cause of high reflectance values of 
the late season growth stage along the visible 
range of the spectrum is the peanut crop leaves 
turning from the green to yellow color.  
 
Moreover, for both of mid-season and initial 
growth stages were follow the same trend, while 
the initial growth stage reflectance values were 
higher than mid- season that is return to the 
influence of the soil background, where soil is 
reflect higher at the visible range than the 
vegetation, mean reflectance. Our results agreed 
with [41] stated that absorption is essentially a 
function of changes in the spin and angular 
momentum   of   electrons, where visible range 
spectral response affected by chlorophylls a and 
b, carotenoids, brown pigments, and other 
accessory pigments. 
 

 
 

Fig. 3.  One-way ANOVA analysis Tukey’s 
HSD test for blue range  

 
Meanwhile, Table 4 and Fig. 6 illustrate the 
differences between all growth stages 
reflectance at the near- infrared NIR range 700- 
1000 nm, where the mid-season growth stage 
was the highest reflectance, where it is highest 

vegetative stage. The initial growth stage was 
lower as result of low vegetation cover and plant 
leaves still in the developing phase that result 
less reflection at the NIR range. Furthermore, the 
reflectance of the late season growth stage at 
the NIR range was the lowest because of 
changes in leaves structure. That agreed with 
[24] who stated that internal structure of the 
leaves of the plant manage the spectral 
reflectance and the transmission on the whole 
spectrum, but this appears more clearly where 
the absorption is low, especially in the near 
infrared domain.  
 

 
 

Fig. 4.  One-way ANOVA analysis Tukey’s 
HSD test for green rage 

 

 
 

Fig. 5.  One-way ANOVA analysis Tukey’s 
HSD test for red range  

 
Table 1. Significance of difference between peanut growth stages according to Tukey’s for 

blue range 
 
G. stages   Mean reflectance Summary of fit for mea ns comparisons for 

all pairs 
Initial C   0.07 Adj Rsquare 0.93 
Middle  B  0.03 
Late   A 0.13 Observations  300 
*Levels not connected by same letter are significantly different 
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Table 2. Significance of difference between peanut growth stages according to Tukey’s for 
green range 

 
  G. stages  Mean reflectance  Summary of fit for means compari sons for all 

pairs 
Initial C   0.12 Adj Rsquare 0.76 
Middle  B  0.06 
Late   A 0.20 Observations 300 
*Levels not connected by same letter are significantly different 

 
Table 3. Significance of difference between peanut growth stages according to Tukey’s for red 

range 
 
  G. stages  Mean reflectance  Summary of fit for means comparisons for 

all pairs 
Initial B   0.22 Adj Rsquare 0.07 
Middle  C  0.16 
Late   A 0.28  Observations  600 
*Levels not connected by same letter are significantly different 

 
Table 4. Significance of difference between peanut growth stages according to Tukey’s for NIR 

range  
 
  G. stages  Mean reflectance  Summary of fit for means comparisons for all 

pairs 
Initial B   0.79 Adj Rsquare 0.94 
Middle  A  0.72 
Late   C 0.62 Observations 750 
*Levels not connected by same letter are significantly different 

 

 
 

Fig. 6. The results of one-way ANOVA 
analysis Tukey’s HSD test for near infrared 

range 
  
Moreover, the results show in Tables 5 and 6 
also illustrated in Figs. 7 and 8 that difference 
between growth stages reflectance along the 
shortwave   infrared (1000-1800 nm) and (1800-
2500 nm) represent SWIR1 and SWIR2, 
respectively. The reflectance values at SWIR1 in 
the different growth stages were similar and 
almost had the same trend. On the other                  
hand, the reflectance varies along SWIR2 
depending on the plant water content and the 
water stress.  

The comparison of reflectance value of the 
different spectrum’s regions generally indicated 
that the plant leaf typically has a low reflectance 
in the visible spectral region because of strong 
absorption by chlorophylls, a relatively high 
reflectance in the near-infrared because of 
internal leaf scattering and a relatively low 
reflectance in the shortwave ranges because of 
strong absorption by water. The Spectral indices 
of growth stages of difference peanut growth 
stages are shown in Table 7. 
 

 
 

Fig. 7. Results of one-way ANOVA analysis 
Tukey’s HSD test for first Short Wave Infra-

Red SWIR range 
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Tables 8 and 9 represent the differences 
between NDVIHS and SAVIHS values for each 
growth stage. The interpretations of the 
calculated vegetation indices from hyper-spectral 
data show that NDVI and SAVI values were 
lowest at initial growth stage and ascending 
increased to reach optimum values at mid-
season growth stage, while these values 
decreased at the late season growth stage. This 
may be attributed to the development of peanut 
crop growth, whereas peanut plants start to 
convert the entire nutrients uptake into peanut 
nuts during the late growth stage at the end of 
the growth season. 
 

 
 

Fig. 8.  Results of one-way ANOVA analysis 
Tukey’s HSD test for second Short Wave 

Infra-Red SWIR range 
 

Table 5. Significance of difference between peanut growth stages according to Tukey’s for 
SWIR1 range 

 
 G. stages      Mean reflectance Summary of fit for  means comparisons for 

all pairs 
Initial C   0.54 Adj Rsquare 0.03 
Middle  B  0.47 
Late   A 0.46 Observations  2184 
*Levels not connected by same letter are significantly different 

 
Table 6. Significance of difference between peanut growth stages according to Tukey’s for 

SWIR2 range 
 
 G. stages        Mean reflectance Summary of fit f or means comparisons for all 

pairs 
Initial C   0.21 Adj Rsquare 0.46 
Middle  B  0.13 
Late   A 0.12 Observations  1197 

*Levels not connected by same letter are significantly different 
 

 Table 7.  Spectral indices of growth stages of difference pea nut growth stages  
 

  Wavelength (nm) 
Range (nm)  446-450 450-455 640-655 660-670 1115-1125 2160-2200 
Center (nm) 449 452 645.6 662.6 1120 2180 
Spectral  
indices  

β-Cryptoxanthin β-Carotene  Chlorophyll b Chlorophyll a Lignin Nitrogen 

References  Rodriguez-Amaya &  
Kimura 2004 

Lichtenthaler H.K. & 
Wellburn A.R., 1983 

Murray  et al. 2008 
Huang et al. 2004 

Initial G. 
stage 

0.0887 0.0889 0.1059 0.0921 0.7234 0.1654 

Midlle G. 
stage 

0.0421 0.0424 0.0549 0.0493 0.8549 0.1835 

Late G. 
stage 

0.1627 0.1681 0.2084 0.2023 0.6234 0.2304 
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Table 8.  Descriptive statistics (minimum, maximum, average v alues and standard deviation for 
NDVI HS) 

 
Variables  
stage 

Minimum  Maximum  Mean  Standard  
error  

Standard  
deviation 

 Count  

Initial  0.03 0.27 0.14 0.01 0.07 52 
Middle  0.2 0.57 0.39 0.01 0.11 65 
Late  0.1 0.69 0.47 0.01 0.13 78 

 
Table 9.  Descriptive statistics (minimum, maximum, average v alues and standard deviation for 

SAVI  HS) 
 

Variables 
stage 

Minimum  Maximum  Mean  Standard  
error  

Standard  
deviation 

 Count  

Initial  0.02 0.25 0.12 0.01 0.07 52 
Middle  0.15 0.59 0.38 0.02 0.13 65 
Late  0.1 0.61 0.47 0.01 0.13 78 

 

4. CONCLUSION 
 
The results showed that the spectral signatures 
of the initial mid-season, late season stage were 
different at certain ranges and similar at another. 
The differences appear clearly at visible, near 
infrared and second shortwave ranges. At the 
first shortwave range both of mid-season and 
initial season growth stages were similar to each 
other. Also the results of the calculated VI’s show 
mid- season stage had the highest values of 
calculated VI’s that return to the high reflection 
from the plant canopy at the near infrared and 
high absorption at the red wavelength. That is 
the cause of mid- season growth stage being the 
highest vegetative stage.  Where differences of 
spectral signatures showed that late growth 
stage was the highest reflection overall the 
visible range (blue, green and red). On the other 
hand, the initial growth stage VI’s values lower 
than the mid- season stage and higher than the 
late season. 
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