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Abstract 

 
In this study two new preliminary test stochastic restricted estimators, a Preliminary Test 

stochastic restricted �-� class estimator and a Preliminary Test stochastic restricted �-d class 

estimator, are proposed. The comparison of one estimator over the other is done in the mean 

square error matrix sense. Further preliminary test stochastic restricted �-� class estimator is 

compared with r-k class estimator [1] and stochastic restricted �-� class estimator [2]. Similarly 

preliminary test stochastic restricted �-� class estimator is compared with �-� class estimator [3] 

and stochastic restricted �-� class estimator [2]. Finally a numerical example and a Monte Carlo 

simulation study are done to illustrate the theoretical findings of the proposed estimators. 

Keywords:  Preliminary test estimator, r-d class estimator, r-k class estimator, mean square error 

matrix 
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1 Introduction 

 
Instead of using the Ordinary Least Square Estimator (OLSE), the biased estimators are 

considered in the regression analysis in the presence of multicollinearity. Some of these are 

namely the Principal Component Regression Estimator (PCRE) [4], Ridge Estimator (RE) [5], Liu 

Estimator (LE) [6], �-� class estimator [1], Almost Unbiased Ridge Estimator (AURE) [7], 

Almost Unbiased Liu Estimator (AULE) [8] and the �-� class estimator [3]. An alternative 

method to deal with multicollinearity problem is to consider parameter estimation with some 

restrictions on the unknown parameters, which may be exact or stochastic restrictions. In the 

presence of stochastic prior information in addition to the sample information, [9] proposed the 

Mixed Estimator (ME). By replacing OLSE by ME in the RE, LE, AURE and AULE respectively, 

the Stochastic Mixed Ridge Estimator (SMRE) [10], Stochastic Restricted Liu Estimator (SRLE) 

[11], Stochastic Restricted Almost Unbiased Ridge Estimator (SRAURE) [12] and Stochastic 

Restricted Almost Unbiased Liu Estimator (SRAULE) [12] are introduced. Recently, [2] proposed 

a new stochastic restricted �-� class estimator which is defined by combing the ME and �-� class 

estimator and a new stochastic restricted �-� class estimator which is defined by combing the ME 

and �-� class estimator. 

 

When different estimators are available to estimate the unknown parameter, preliminary test 

estimation procedure is adopted to select a suitable estimator, and it can be also used as another 

estimator with combining properties of both estimators. The preliminary test approach was first 

proposed by [13], and then has been studied by many researchers, such as [14,15,16]. By 

combining OLSE and ME, the Ordinary Stochastic Preliminary Test Estimator (OSPE) was 

proposed by [15]. Recently, [16] introduced the Preliminary Test Stochastic Restricted Liu 

Estimator (PTSRLE) by combining the Stochastic Restricted Liu Estimator and Liu Estimator. 

 

In this study, we propose a new Preliminary Test stochastic restricted �-� class estimator which is 

defined by combing the r-k class estimator and stochastic restricted �-� class estimator and a new 

Preliminary Test stochastic restricted �-� class estimator which is defined by combing the �-� 

class estimator and stochastic restricted �-� class estimator. Further the proposed estimators are 

compared with some biased estimators in the mean square error matrix sense. Also Preliminary 

Test stochastic restricted �-� class estimator is compared with Preliminary Test stochastic 

restricted �-� class estimator. Finally a numerical example and a Monte Carlo simulation study are 

done to illustrate the theoretical findings of the proposed estimators. 

 

2 Model Specification and Estimators 

 
First we consider the multiple linear regression model 

 

                         ( )2,  ~ 0,Y X N Iβ ε ε σ= + ,                                                          (2.1) 

 

where Y is an 1×n observable random vector, X is an pn × known design matrix of rank p , 

β  is a 1×p  vector of unknown parameters and ε is an 1×n vector of disturbances. 
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In addition to sample model (2.1), let us be given some prior information about β in the form of a 

set of m  independent stochastic linear restrictions as follows; 

 

                         υδβ ++= Rr , ( )2~ 0,Nυ σ Ω                                                     (2.2) 

 

where r is an 1×m stochastic known vector R is a pm × of full row rank pm ≤ with known 

elements, δ is non zero 1×m  unknown vector and υ  is an 1×m random vector of disturbances 

and Ω  is assumed to be known and positive definite. Further it is assumed that υ  is 

stochastically independent of .ε  i.e.
 

( ) 0E ευ ′ = . 

 

The Ordinary Least Squares Estimator (OLSE) for the model (2.1) and the mixed estimator [9] 

due to a stochastic prior restriction (2.2) are given by 

 

                 YXS  ˆ 1 ′= −β      and ( ) ( )
1

1 1ˆ ˆ ˆ
m

S R RS R r Rβ β β
−

− ′ ′= + Ω + −                  (2.3) 

 

respectively. where  S X X′= . 

 

The expectation vector, and the mean square error matrix of β̂ are given as ( )ˆE β β= and 

( ) 2 1ˆMSE Sβ σ −=  respectively.  

 

The expectation vector, dispersion matrix, and the mean square error matrix of ˆ
m

β  

are given as ( )ˆ
mE Hβ β δ= + , ( ) 2 1 2ˆ

mD S Gβ σ σ−= −  and  

( ) ( )2 1ˆ
mMSE S G H Hβ σ δδ− ′ ′= − + respectively, where, 

( )
1

1 1 1G S R RS R RS
−

− − −′ ′= Ω + , ( )
1

1 1H S R RS R
−

− −′ ′= Ω +  and ( )E r Rδ β= − . 

 

When different estimators are available for the same parameter vector β  in the linear regression 

model one must solve the problem of their comparison. Usually as a simultaneous measure of 

covariance and bias, the mean square error matrix is used, and is defined by 

 

           ( )( ) ( ) ( ) ( )ˆ ˆ ˆ ˆ ˆ ˆ( , )MSE E D B Bβ β β β β β β β β
 ′

′= − − = + 
 

,                        (2.4) 

 

where ˆ( )D β is the dispersion matrix, and ( ) ( )ˆ ˆB Eβ β β= − denotes the bias vector. We 

recall that the Scalar Mean Square Error ( ) ( )ˆ ˆ, ,SMSE trace MSEβ β β β =
 

. 
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For two given estimators 1β̂  and 2β̂ , the estimator 2β̂
 
is said to be superior to 1β̂ under the 

MSEM criterion if and only if 

 

             ( ) ( ) ( )1 2 1 2
ˆ ˆ ˆ ˆ, , , 0M MSE MSEβ β β β β β= − ≥ .                     (2.5) 

 

Let us now turn to the question of the statistical evaluation of the compatibility of sample and 

stochastic information. The classical procedures is to test the hypothesis 

 

     0:0 =δH  against 0:1 ≠≠≠≠δH                                                                        (2.6) 

 

under linear model (2.1) and stochastic prior information (2.2). 

 

The Ordinary Stochastic Pre Test Estimator (OSPE) of β  [15] is defined as 

 

              
0

1

ˆ    if   : 0
ˆ

ˆ      if   : 0

m

OSPE

H

H

β δ
β

β δ

 =
= 

≠

                                                                        (2.7) 

 

Further, we can write (2.7) as 

 

               
) ( ) ) ( )

, ,0, ( ) ( ),

ˆ ˆ ˆ
m n p m n p

OSPE m F F
I F I F

α α
β β β

− −  ∞ 
= + ,

                      
                    (2.8) 

 

where,   
( ) ( ) ( )

1
1

2

ˆ ˆ

ˆ

r R RS R r R
F

m

β β

σ

−
−′

′− Ω + −
=                                                      (2.9) 

 

which has a non-central λ,, pnmF − distribution under 0:1 ≠δH , with non-centrality parameter 

 

              
( )

1
1

22

RS Rδ δ
λ

σ

−
−′ ′Ω +

=  with 
( ) ( )

2

ˆ ˆ

ˆ
Y X Y X

n p

β β
σ

′
− −

=
−

,

                   

(2.10) 

 

and 
) ( )

,0, ( )m n pF
I F

α−  
and 

) ( )
, ( ),m n pF

I F
α− ∞

are indicator functions which take the value one if 

F falls in the subscripted interval, and zero otherwise. ( ),m n pF α−  
is the upper α - level critical 

value from the central F distribution 0,, pnmF − . 

 

The expectation vector, dispersion matrix, and the mean square error matrix of ˆ
OSPE

β  are derived 

by [15], and given by 
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        ( ) ( )ˆ 2OSPEE h Hλβ β δ= + ,                  (2.11) 

 

       ( ) ( ) ( ) ( ) ( )2 1 2 2ˆ 2 2 2 4 2OSPED S h G h h h H Hλ λ λ λβ σ σ δδ− ′ ′ = − + − −  ,          (2.12) 

 

and  

 

       ( ) ( ) ( ) ( )( )2 1 2ˆ 2 2 2 4OSPEMSE S h G h h H Hλ λ λβ σ σ δδ− ′ ′= − + −               (2.13) 

 

respectively, where,

 

( )
2

,,

2

( )
Pr   for 

m n pm

n p

mF
h

n p

λ
λ

αχ

χ
−+

−

 
= ≤ ∈ Ν  − 

l
l l . 

 

Now we consider the transformation for model (2.1): 

 

y XTT Zβ ε α ε′= + = +                                                                    (2.14) 

 

where Z XT= , Tα β′=  and ( ) ( )1 2, ,..., ,p r p rT t t t T T −= = is a p p× orthogonal matrix 

such that  

                        

( ) ( )
0

, ,
0

r

r p r r p r

p r

T T X X T T− −
−

Λ ′ ′ = Λ =  
Λ   

 

where 0 k p< ≤ , ( )1 2, , ...,r rT t t t=  ,
 

( )1 2
, ,...,

p r r r p
T t t t− + +=  ,

 
( )1 2

, ,...,
p

diag λ λ λΛ =  ,
 

( )1 2, ,...,
r r

diag λ λ λΛ =  ,
 

( )1 2, ,...,p r r r pdiag λ λ λ− + +Λ =  and 
1 2 ... 0pλ λ λ≥ ≥ ≥ > are 

the eigenvalues of X X′ . Note that ( ) ( )1 2, ,..., ,p r r pZ XT z z z Z Z −= = = is the n p× matrix 

of the principal components, where i iz Xt=  is the 
thi principal component. When 

p rZ − contains 

principal components corresponding to near zero eigenvalues, Z can be separated as 

rZ and
p rZ − , where 

p rZ − is to be deleted. Now we can rewrite the model (2.14) as 

 

        .r r p r p r r r p r p ry XTT XT T XT T Z Zβ β β ε α α ε− − − −
′ ′ ′= = + + = + +                   (2.15) 

 

By omitting
p rZ − , the OLSE of rα is obtained, and ( )

1
ˆ

r r r rZ Z Z yα
−

′ ′= . Then PCRE of β is  

 

( )
1ˆ

PCRE r r r rT T ST T X yβ
−

′ ′ ′= .                                                                                     (2.16) 

 

Now the �-� class estimator proposed by [1] and the �-� class estimator proposed by [3] are 

defined as 
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           ( ) ( )
1ˆ ,rk r r r r rr k T T X XT kI T X yβ

−
′ ′ ′ ′= +                     (2.17) 

 

and 

 

           ( ) ( ) ( )1ˆ ˆ,rd r r r r r r rr d T T X XT kI T X y dTβ β
−

′ ′ ′ ′ ′= + +                                             (2.18) 

 

respectively. 

 

Followed by [17], the �-� class estimator and the �-� class estimator could be rewritten as 

follows: 

 

          ( ) ( )ˆ ˆ ˆ ˆ,
rk r r r r k k

r k T T k T T W Rβ β β β′ ′= = =                                                             (2.19) 

 

and 

           ( ) ( )ˆ ˆ ˆ ˆ,
rd r r r r d d

r d T T d T T F Hβ β β β′ ′= = =                                                            (2.20) 

 

respectively, where ( )ˆ ˆ
kk Wβ β= , ( )ˆ ˆ

dd Fβ β= , ( )
1

1

k
W I kS

−
−= + for  

0k ≥ , ( ) ( )
1

dF S I S dI
−

= + + for 0 1d< < , 
k r r k

R T T W′= and
d r r d

H T T F′= .  

 

Note that when r p= we may conclude that
r r pT T I′ = . Hence the estimators ( )ˆ ˆ,

rk k
r k Wβ β=  

called as RE and ( )ˆ ˆ,rd dr d Fβ β= named as LE. 

 

The mean square error matrices of ( )ˆ ,rk r kβ  and ( )ˆ ,rd r dβ  can be obtained as  

 

( ) ( ) ( )2 1ˆ ,rk k k k kMSE r k R S R R I R Iβ σ ββ− ′  ′ ′= + − −                       (2.21) 

and  

( ) ( ) ( )2 1ˆ ,rd d d d dMSE r d H S H H I H Iβ σ ββ− ′  ′ ′= + − −                             (2.22) 

 

respectively. 

 

[2] proposed a new stochastic restricted �-� class estimator which is defined by combing the ME 

and �-� class estimator and a new stochastic restricted �-� class estimator which is defined by 

combing the ME and �-� class estimator as follows: 

 

        ( ) ( )ˆ ˆ ˆ ˆ,SRrk r r r r k m k mr k T T k T T W Rβ β β β′ ′= = =                                                       (2.23) 

and 
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       ( ) ( )ˆ ˆ ˆ ˆ,SRrd r r r r d m d mr d T T d T T F Hβ β β β′ ′= = =                                                      (2.24) 

 

respectively. 

When r p= , the estimator ( )ˆ ˆ,
SRrk k m

r k Wβ β=
 
called as SMRE and ( )ˆ ˆ,

SRrd d m
r d Fβ β=  

named as SRLE. 

 

The mean square error matrices of ( )ˆ ,
SRrk

r kβ
 
and ( )ˆ ,

SRrd
r dβ  can be derived as 

 

     

( )

( ) ( )

2 1 2ˆ ,

                                      

SRrk k k k k

k k k k

MSE r k R S R R GR

R I R H R I R H

β σ σ

β δ β δ

−  ′ ′= − 

′   + − + − +   

           (2.25) 

 

and

 

 

   

( )

( ) ( )

2 1 2ˆ ,

                                         

SRrd d d d d

d d d d

MSE r d H S H H GH

H I H H H I H H

β σ σ

β δ β δ

−  ′ ′= − 

′   + − + − +   

    (2.26) 

 

respectively.     

 

3 Proposed Estimators 

 
[16] proposed the Preliminary Test Stochastic Restricted Liu Estimator (PTSRLE) by combining 

the LE and SRLE as follows: 

 

( ) ) ( ) ) ( )
, ,0, ( ) ( ),

ˆ ˆ ˆ
m n p m n p

PTSRLE d m d d OSPEF F
d F I F F I F F

α α
β β β β

− −  ∞ 
= + =%               (3.1) 

 

Following [16], we may write the Preliminary Test Stochastic Mixed Ridge Estimator (PTSMRE) 

by combining RE and SMRE as follows: 

 

          ( ) ) ( ) ) ( )
, ,0, ( ) ( ),

ˆ ˆ ˆ
m n p m n p

PTSMRE k m k k OSPEF F
k W I F W I F W

α α
β β β β

− −  ∞ 
= + =%               (3.2) 

 

Following [16], we propose a new Preliminary Test stochastic restricted �-� class estimator 

(PTSRrk) which is defined by combing the r-k class estimator and stochastic restricted �-� class 

estimator and a new Preliminary Test stochastic restricted �-� class estimator (PTSRrd) which is 

defined by combing the �-� class estimator and stochastic restricted �-� class estimator as 

follows: 
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( ) ) ( ) ) ( )
, ,0, ( ) ( ),

ˆ ˆ ˆ ,
m n p m n p

PTSRrk k m k OSPEF F
k R I F I F R

α α
β β β β

− −  ∞ 

 = + =
  

%              (3.3) 

and 

( ) ) ( ) ) ( )
, ,0, ( ) ( ),

ˆ ˆ ˆ
m n p m n p

PTSRrd d m d OSPEF F
d H I F I F H

α α
β β β β

− −  ∞ 

 = + =
  

%             (3.4) 

respectively. 

 

Now we will see some properties of proposed estimators. 

 

1. When r p= , we may conclude that ( ) ( )PTSRrk PTSMRE
k kβ β=% %  and 

( ) ( )PTSRrd PTSRLE
d dβ β=% % . 

2. When r p= , 0k = and 1d = , we may conclude that ( ) ( ) ˆ
PTSRrk PTSRrd OSPEk dβ β β= =% % . 

3. When 0α = , we may conclude that ( ) ( )ˆ ,
PTSRrk SRrk

k r kβ β=%  and 

( ) ( )ˆ ,
PTSRrd SRrd

d r dβ β=% . 

4. When 1α = , we may conclude that ( ) ( )ˆ ,PTSRrk rkk r kβ β=% and ( ) ( )ˆ ,PTSRrd rdd r dβ β=% . 

 

By using (2.11), (2.12) and (2.13), the expectation vector, bias vector, dispersion matrix, and the 

mean square error matrix of ( )PTSRrk
kβ%  can be shown as follows: 

 

      ( ) ( ) ( )ˆ 2PTSRrk k OSPE k kE k R E R h R Hλβ β β δ  = = + 
% ,                                              (3.5)   

   

      ( ) ( ) ( ) ( )2 ,PTSRrk PTSRrk k kB k E k R I h R Hλβ β β β δ   = − = − +   
% %                       (3.6) 

  

     
( ) ( )

( ) ( ) ( ) ( )2 1 2 2

ˆ

  2 2 2 4 2 ,

PTSRrk k OSPE k

k k k k k k

D k R D R

R S R h R GR h h h R H H Rλ λ λ λ

β β

σ σ δδ−

  ′= 

′ ′ ′ ′ ′ = − + − − 

%

   (3.7) 

 

and 

 

     

( )

( ) ( ) ( )

( ) ( ) ( ) ( )

2 1 2

2

1 1

(2)

                     2 2 4 2

              2 2

PTSRrk k k k k

k k

k k k k

MSE k R S R h R GR

h h h R H H R

R I R h H I R h H R

λ

λ λ λ

λ λ

β σ σ

δδ

β δ β δ

−

− −

  ′ ′= − 

′ ′ ′ + − − 

′    ′+ − + − +   

%

             (3.8) 

 

respectively. 
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Similarly the expectation vector, bias vector, dispersion matrix, and the mean square error matrix 

of ( )PTSRrd
dβ%  can be shown as follows: 

 

            
( ) ( ) ( )ˆ 2 ,PTSRrd d OSPE d dE d H E H h H Hλβ β β δ  = = + 

%                                    (3.9) 

           
( ) ( ) ( )2 ,PTSRrd d dB d H I h H Hλβ β δ  = − + 

%                                                     (3.10) 

 

           

( ) ( )

( ) ( ) ( )

2 1 2

2

2

                                      2 2 4 2 ,

PTSRrd d d d d

d d

D d H S H h H GH

h h h H H H H

λ

λ λ λ

β σ σ

δδ

−  ′ ′ ′= − 

′ ′ ′ + − − 

%

            (3.11) 

and 

 

( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( )

2 1 2

2

1 1

2

                  2 2 4 2

             2 2

PTSRrd d d d d

d d

d d d d

MSE d H S H h H GH

h h h H H H H

H I H h H I H h H H

λ

λ λ λ

λ λ

β σ σ

δδ

β δ β δ

−

− −

  ′ ′ ′= − 

′ ′ ′ + − − 

′    ′+ − + − +   

%

          (3.12) 

 

respectively. 

 

4 Mean Square Error Matrix Comparisons 

 
In this section the Preliminary Test stochastic restricted �-� class estimator will be compared with 

�-� class estimator and stochastic restricted �-� class estimator and, the Preliminary Test 

stochastic restricted �-k class estimator will be compared with �-k class estimator and stochastic 

restricted �-k class estimator in the mean square error matrix sense. Also Preliminary Test 

stochastic restricted �-� class estimator will be compared with Preliminary Test stochastic 

restricted �-� class estimator. 

 

4.1 Comparison between ( )ˆ ,
rk

r kβ and ( )PTSRrk
kβ%  

 

The mean square error matrix difference between ( )PTSRrk
kβ%

 
and ˆ ( , )

rk
r kβ  is obtained as 

 

      ( ) ( ) [ ]1 1 2 2
ˆ ,rk PTSRrk k kMSE r k MSE k R D d d d d Rβ β    ′ ′ ′− = + −  

%               (4.1) 

 

where ( )2 2D h G H Hλσ ξ δδ ′ ′= − , ( ) ( ) ( )22 2 4 2h h hλ λ λξ = − − , ( )1

1 k
d I R β−= − and  

( ) ( )1

2 2kd I R h Hλβ δ−= − + . 

 

Now the following theorem can be stated. 
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Theorem 4.1: When
( ) ( ) ( )

1

2 2 2 / 4 2h h hλ λ λ

λ ≤
 − − 

, the estimator ( )PTSRrk
kβ% is superior 

to ( )ˆ ,
rk

r kβ if and only if ( )
1

2 1 1 2 1d D d d d
−

′ ′+ ≤ . 

Proof: The mean square error matrix difference between ( )PTSRrk
kβ%

 
and ˆ ( , )

rk
r kβ

 
is 

nonnegative definite matrix if and only if 1 1 2 2 0D d d d d′ ′+ − ≥ . To find the conditions that 

1 1 2 2 0D d d d d′ ′+ − ≥
 

by using lemma 3 (Appendix), we have to show that that D is a 

nonnegative definite matrix and ( )1 2,d d D∈ℜ , where ( ).ℜ denote the column space of the 

corresponding matrix. 

Note that 

( )
( )2

2
1

2
2

h
D h G H H G H H D

λ
λ

σ
σ ξ δδ ξ δδ ξ

ξ

 
′ ′ ′ ′= − = − =  

   

 where 
( )2

1

2h
D G H H

λσ
δδ

ξ
′ ′= − . 

Set 
( )2
2hλσ

γ
ξ

= , B G=  and a Hδ= . 

 

Note that 0G ≥ , and the generalized inverse of G  is ( )( )1G SR RS R R S
+− + − ′ ′= + Ω . 

Hence GG H Hδ δ− = . This implies ( )H Gδ ∈ℜ . Then according to lemma 1 (Appendix) 

 

( )2
2h

H G H
λσ

δ δ
ξ

−′ ′ ≤                (4.2) 

 

After some straightforward calculations we can easily now show that   

                          

   ( )
1

1H G H RS Rδ δ δ δ
−

− −′ ′ ′ ′= + Ω
 
                    (4.3) 

 

By substituting this result to (4.2) we can obtain 

 

( ) ( )
1

1

2

2

2 2

RS R hλ
δ δ

σ ξ

−
−′ ′ + Ω

≤ .                     (4.4) 

 

 

Using (2.10), this inequality can be rewritten as 
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( ) ( ) ( )

1

2 2 2 / 4 2h h hλ λ λ

λ ≤
 − − 

 .             (4.5) 

 

Then according to lemma 1, 1D
 
is a nonnegative definite matrix, and therefore 

1 0D Dξ= ≥
 

since 0ξ ≥ . 

 

Now the Moore Penrose inverse of D  is obtained by using lemma 2 (Appendix), and is given by 

 

     
( ) ( )2 2

1

2 2
D G G H H G

h h H G Hλ λ

ξ
δδ

σ σ ξδ δ
+ + + +

+

 
′ ′= × + 

′ ′−  
.                       (4.6) 

    
After some straightforward calculations we can show that  

 

                  
22H G Hδ δ σ λ+′ ′ = .                                                                              (4.7) 

 

Using (4.6) and (4.7) we can easily prove that 
p

DD I
+ = , where 

pI
 
is an identity matrix with 

order ( )p p× . This implies that 
1 1DD d d

+ =  and 
2 2DD d d

+ = . Then we have ( )1d D∈ ℜ
 

and ( )2d D∈ ℜ . To establish condition (a) in the lemma 3, we find 
ij i j

f d D d
−′=  for 

1, 2, 1, 2i j= =
 
such that 

 

        
( ) ( )1 1

11 k kf I R D I Rβ β− + −′′= − −
, 

       
( ) ( ) ( ) ( )1 1

22 2 2k kf I R h H D I R h Hλ λβ δ β δ− + −′   = − + − +
    and 

      
( ) ( ) ( )1 1

12 2k kf I R D I R h Hλβ β δ− + −′  ′= − − +
  .                                                                                   

 

Note that, instead of D−
, the Moore Penrose inverse D+

of D  is used, since 
ijf

 
is invariant to 

the choice of D−
. 

 

Now according to lemma 3 in appendix, ( ) ( )ˆ , 0rk PTSRrkMSE r k MSE kβ β   − ≥  
% if and 

only if  

( )( ) ( )
2

1 1 2 2 1 1 21 1d D d d D d d D d+ + +′ ′ ′+ − ≤
. 
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4.2 Comparison between ˆ ( , )
SRrk

r kβ
 
and ( )PTSRrk kβ%  

 

The mean square error matrix difference between ( )PTSRrk
kβ% and ( )ˆ ,

SRrk
r kβ  is obtained as 

     ( ) ( ) 2 3 3 4 4
ˆ

PTSRrk SRrkMSE k MSE k D d d d dβ β   ′ ′− = + −   
%           (4.8) 

 

Where ( )2

2 1 2 k k k kD h R GR R H H Rλσ ξ δδ′ ′ ′ ′ = − +  , ( ) ( )3 2
k k

d R I h R Hλβ δ= − +
 

and ( )4 k k
d R I R Hβ δ= − + . 

 

Now we can state the following theorem. 

 

Theorem 4.2: The estimator ( )ˆ ,SRrk r kβ is superior to ( )PTSRrk kβ% if and only 

if ( )
1

4 2 3 3 4 1d D d d d
−

′ ′+ ≤ . 

 

Proof: First we consider the matrix  

 

                     
( )2

2
1 2

k k k k
D h R GR R H H Rλσ ξ δδ′ ′ ′ ′ = − +  . 

 

The matrix 2D
 

can be rewritten as 2 k kD R M R′=
l

, where 

[ ]2 1 (2)M h G H Hλσ ξ δδ ′ ′= − +
l

. The matrix ( )2 1 2h Gλσ  −   
is nonnegative definite 

matrix since 0G ≥  and ( )0 2 1hλ≤ ≤ , and the matrix H Hξ δδ ′ ′
 
is positive definite matrix 

since H Hδδ ′ ′  is positive definite matrix and 0ξ ≥ . Therefore the matrix M
l  

is positive 

definite matrix, which leads the matrix 2D
 

is positive definite matrix since 0kR > . Now 

according to lemma 4 (Appendix), the matrix 2 3 3 4 4 0D d d d d′ ′+ − ≥  if and only if 

( )
1

4 2 3 3 4 1d D d d d
−

′ ′+ ≤ . This completes the proof. 

 

4.3 Comparison between ( )ˆ ,
rd

r dβ
 
and ( )PTSRrd

dβ%  

 

The mean square error matrix difference between ( )PTSRrd
dβ%

 
and ( )ˆ ,

rd
r dβ  is obtained as 

 

           ( ) ( ) ( )1 1 2 2
ˆ ,rd PTSRrd d dMSE r d MSE d H D b b b b Hβ β    ′ ′ ′− = + −  

%                  (4.9) 

 

where, ( )1

1 db I H β−= −
 
and ( ) ( )1

2 2db I H h Hλβ δ−= − + . 
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Theorem 4.3: When
( ) ( ) ( )

1

2 2 2 / 4 2h h hλ λ λ

λ ≤
 − − 

, the estimator ( )PTSRrd
dβ%  is 

superior to ( )ˆ ,
rd

r dβ
 
if and only if ( )

1

2 1 1 2 1b D b b b
−

′ ′+ ≤ . 

 

Proof: The mean square error difference between ( )PTSRrd
dβ%

 
and ( )ˆ ,

rd
r dβ

 
is nonnegative 

definite matrix if and only if 1 1 2 2 0D bb b b′ ′+ − ≥ . We have already proved that 0D ≥  

and
p

DD I
+ = . Therefore 1 1DD b b

+ =  and 2 2DD b b
+ = , which implies that ( )1 2,b b D∈ℜ . 

Now according to lemma 3, 1 1 2 2 0D bb b b′ ′+ − ≥ if and only 

if ( )( ) ( )
2

1 1 2 2 1 1 21 1b D b b D b b D b+ + +′ ′ ′+ − ≤ . This completes the proof. 

 

4.4 Comparison between ( )ˆ ,
SRrd

r dβ and ( )PTSRrd
dβ%  

 

The mean square error matrix difference between ( )PTSRrd
dβ%

 
and ( )ˆ ,

SRrd
r dβ  is obtained as 

 

            ( ) ( ) 1 3 3 4 4
ˆ

PTSRrd SRrdMSE d MSE d B b b b bβ β   ′ ′− = + −   
%                              (4.10) 

 

where ( )2

1 1 2 d d d dB h H GH H H H Hλσ ξ δδ′ ′ ′ ′ = − +  , ( ) ( )3 2d db H I h H Hλβ δ= − +

and ( )4 d d
b H I H Hβ δ= − + . 

 

Now the following theorem can be stated. 

 

Theorem 4.4: The estimator ( )ˆ ,
SRrd

r dβ
 

is superior to ( )PTSRrd
dβ%

 
if and only 

if ( )
1

4 1 3 3 4 1b B b b b
−

′ ′+ ≤ . 

 

Proof: The matrix 1B  can be rewritten as 1 d dB H M H ′=
l

. We have already proved that M
l  

is 

positive definite matrix. Therefore the matrix 1B is positive definite matrix since 0dH > . Now 

according to lemma 1, the matrix 1 3 3 4 4 0B b b b b′ ′+ − ≥
 
if and only if ( )

1

4 3 3 4 1b B b b b
−

′ ′+ ≤ . 

This completes the proof. 

 

4.5 Comparison between ( )PTSRrd
dβ%

 
and ( )PTSRrk

kβ%  

 

The mean square error matrix between ( )PTSRrd
dβ%

 
and ( )PTSRrk

kβ%
 
is given as 
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( ) ( ) 3 3 3 3PTSRrk PTSRrdMSE k MSE d d d b bβ β ϑ    ′ ′− = + −   
% %                            (4.11) 

 
where 

k x k d x d
R M R H M Hϑ ′ ′= −  and ( )2 1 2 2xM S h G H Hλσ σ ξ δδ− ′ ′= − + . 

 

Theorem 4.5:  When maximum eigenvalues of ( )( )
1

d x d k x kH M H R M R
−

′ ′  is less than one, the 

estimator ( )PTSRrd
dβ% is superior to ( )PTSRrk

kβ%
 
if and only if ( )

1

3 3 3 3 1b d d bϑ
−

′ ′+ ≤ . 

 

Proof:  First we consider ( )2 1 2 2xM S h G H Hλσ σ ξ δδ− ′ ′= − + .Note that  

( ) ( )2 1 2 2 12S h G S Gλσ σ σ− −− ≥ −
 
since ( )0 2 1hλ≤ ≤ . But  

( )
1

1 1 0S G S R R
−

− − ′− = + Ω ≥ .  

 

Therefore ( )2 1 2
2 0S h Gλσ σ− − ≥ . Since ( )2 1 2

2 0S h Gλσ σ− − ≥ and 0H Hξ δδ ′ ′ > , the 

matrix 0xM > . Therefore 
d x d

H M H ′
 

and 
k x k

R M R′
 

are positive definite matrices since 

0
d

H >
 

and 0
k

R >
 

respectively. So that, according to lemma 5, 

0
k x k d x d

R M R H M Hϑ ′ ′= − >
 

if and only if maximum eigenvalues of 

( )( )
1

d x d k x kH M H R M R
−

′ ′  is less than one. Applying lemma 4, we can easily prove that the 

estimator ( )PTSRrd dβ%
 
is superior to ( )PTSRrk kβ%

 
if and only if ( )

1

3 3 3 3 1b d d bϑ
−

′ ′+ ≤ . This 

completes the proof. 

 
Note: In the above theorem, when 0α = and 1α = , we can obtain the superiority conditions of 

the Stochastic Restricted r-k class estimator over the Stochastic Restricted r-d class estimator, and 

the superiority conditions of the r-k class estimator over the r-d class estimator respectively. 

 

5 Illustration of Theoretical Results 

 
5.1 Numerical Example 

 
To illustrate our theoretical results in this section we consider the data set which was discussed in 

[18] and later considered by [10,19,20,21,22,23]. Table 5.1 gives Total National Research and 

Development Expenditures-as a Percent of Gross National Product by Country: 1972-1986. It 

represents the relationship between the dependent variable y the percentage spent by the United 

States and the dependent variables 
1 2 3, ,x x x

 
and

4x . The variable 
1x represents the percent spent 
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by France, 
2x that spent by West Germany, 

3x that spent by Japan, and 
4x that spent by the 

former Soviet Union. 

 

Table 5.1 Total national research and development expenditures-as a percent of gross 

national product by country: 1972-1986 

 

Year y
 1x

 2x
 3x

 4x
 

1972 2.3 1.9 2.2 1.9 3.7 

1975 2.2 1.8 2.2 2.0 3.8 

1979 2.2 1.8 2.4 2.1 3.6 

1980 2.3 1.8 2.4 2.2 3.8 

1981 2.4 2.0 2.5 2.3 3.8 

1982 2.5 2.1 2.6 2.4 3.7 

1983 2.6 2.1 2.6 2.6 3.8 

1984 2.6 2.2 2.6 2.6 4.0 

1985 2.7 2.3 2.8 2.8 3.7 

1986 2.7 2.3 2.7 2.8 3.8 

 
We assemble the data in the matrix form as follows: 

 
1.9 2.2 1.9 3.7

1.8 2.2 2.0 3.8

1.8 2.4 2.1 3.6

1.8 2.4 2.2 3.8

2.0 2.5 2.3 3.8

2.1 2.6 2.4 3.7

2.1 2.6 2.6 3.8

2.2 2.6 2.6 4.0

2.3 2.8 2.8 3.7

2.3 2.7 2.8 3.8

X

 
 
 
 
 
 
 

=  
 
 
 
 
 
 
 
  ,

2.3

2.2

2.2

2.3

2.4

2.5

2.6

2.6

2.7

2.7

y

 
 
 
 
 
 
 

=  
 
 
 
 
 
 
 
   

            

The four column of the 410× matrix X comprise the data on 1x , 2x ,
3x  and 4x

 
respectively, 

and y is the response variable. Note that the eigen values of 

S are
1 302.9626,λ = 2 0.7283λ = , 

3 0.0447λ = and 
4 0.0345λ =  and the condition 

number of X  is approximately 8781.53. This implies the existence of multicollinearity in the 

data set. The OLSE is given by 
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( )1ˆ 0.6455,0.0896,0.1436,0.1526OLSE S X yβ − ′′= =

                                         

with ( )ˆ , 0.0808OLSEMSE β β =  and 
2ˆ 0.0015σ = . 

 
Consider the following stochastic restrictions  

 

r Rβ δ ν= + +  where ( )1, 2, 2, 2R ′= − − − , 1r =  and ( )2ˆ~ 0, 0.0015Nν σ = .
               

 

We select the significance level 0.05α = . Following [24] we choose the number of the principal 

components 3r = . Fig. 1, Fig. 2 and Fig. 3 are obtained by using the equations (2.21), (2.22), 

(2.25), (2.26), (3.8) and (3.12) for different shrinkage parameters d and k values selected from the 

interval (0, 1). 

 

 

 
 

Fig. 1. Estimated SMSE value of rk, SRrk and PTSRrk 
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Fig. 2. Estimated SMSE value of rd, SRrd and PTSRrd 
 

 
 

Fig. 3. Estimated SMSE value of PTSRrk and PTSRrd 
 

 
From Fig. 1, when k is small the PTSRrk has the smallest SMSE than stochastic restricted r-k 

class estimator. When k is large, the PTSRrk has the smallest SMSE than r-k class estimator. From 

Fig. 2, when d is small the PTSRrd has the smallest SMSE than r-d class estimator. When d is 

large, the PTSRrd has the smallest SMSE than stochastic restricted r-d class estimator. From Fig. 

3, when d/k is small, the PTSRrk has the smallest SMSE than PTSRrd, the situation is reversed 
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when d/k is large. From Fig. 1, Fig. 2 and Fig. 3, we can say that no estimator is always superior to 

other estimators.  

 

5.2 Simulation Study 
 

To illustrate the statistical behavior of our proposed estimators, we perform a Monte Carlo 

Simulation study by considering different levels of multicollinearity. Following [25] we generate 

explanatory variables as follows: 
 

                 
( )

1/2
2

, 11 ,  1, 2,..., ,   1, 2,..., ,ij ij i px z z i n j pρ ρ += − + = =
 

where 
ij

z is an independent standard normal pseudo random number, and ρ is specified so that 

the theoretical correlation between any two explanatory variables is given by 
2ρ . A dependent 

variable is generated by using the equation. 
 

               1 1 2 2 3 3 4 4 ,  1,2,..., ,i i i i i iy x x x x i nβ β β β ε= + + + + =
 

where 
i

ε
 
is a normal pseudo random number with mean zero and variance

2

iσ . [26] have noted 

that if the MSE is a function of 
2σ and β , and if the explanatory variables are fixed, then subject 

to the constraint 1β β′ = , the MSE is minimized when β  is the normalized eigenvector 

corresponding to the largest eigenvalue of the X X′  matrix. In this study we choose the 

normalized eigenvector corresponding to the largest eigenvalue of X X′  as the coefficient 

vector β , 50n =  ,
 

4p =  and
2 1σ = . Two different sets of correlations are considered by 

selecting the values as 0.8ρ =  0.8 and 0.9, and the significance level is taken as 0.05α = . Fig. 

4, Fig. 5, Fig. 6, Fig. 7, Fig. 8 and Fig. 9 are obtained by using the equations (2.21), (2.22), (2.25), 

(2.26), (3.8) and (3.12) for different shrinkage parameters d and k values selected from the interval 

(0, 1).  
        

 
 

Fig. 4. Estimated SMSE value of rk, SRrk 

and PTSRrk for 0.8ρ =  

 

Fig. 5. Estimated SMSE value of rk, SRrk 

and PTSRrk for 0.9ρ =  
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Fig. 6. Estimated SMSE value of rd, SRrd 

and PTSRrd for 0.8ρ =  

 

Fig. 7. Estimated SMSE value of rd, SRrd 

and PTSRrd for 0.9ρ =  

 
 

Fig. 8. Estimated SMSE value of PTSRrk 

and PTSRrd for 0.8ρ =  

Fig. 9. Estimated SMSE value of PTSRrk 

and PTSRrd for 0.9ρ =  

 

Based on Fig. 4, r-k class estimator and PTSRrk have smallest SMSE than stochastic restricted r-k 

class estimator. According to Fig.5, there is no big difference in the SMSE except k=0. From 

Fig.6 and Fig.7, we can say that, when d is large the estimator r-d class estimator has the smallest 

SMSE than PTSRrd. From Fig.8 and Fig.9 we can notice that when d or k is small, the PTSRrk 

has the smallest SMSE than PTSRrd, the situation is reversed when d or k is large.  

 

Remark: [27] proposed the Generalized Preliminary Test Stochastic Restricted Estimator 

(GPTSRE) as follows: 
 

( ) ) ( ) ( ) ) ( )
, ,

( )0, ( ) ( ),

ˆ ˆ ˆ
m n p m n p

GPTSRE m j OSPEj jF F
A I F A I F A

α α
β β β β

− −  ∞ 
= + =%

 
 

where ( )j
A is a positive definite matrix.  

 

Note that when ( )j kA R= , GPTSREβ%  gives the Preliminary Test stochastic restricted �-� class 

estimator (PTSRrk), and when ( )j d
A H= , it gives the Preliminary Test stochastic restricted �-d 

class estimator (PTSRrd). 
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6 Conclusion 
 
In this study, we propose a new Preliminary Test stochastic restricted �-� class estimator which is 

defined by combing the r-k class estimator and stochastic restricted �-� class estimator and a new 

Preliminary Test stochastic restricted �-� class estimator which is defined by combing the �-� 

class estimator and stochastic restricted �-� class estimator. Further the proposed estimators are 

compared with some biased estimators in the mean square error matrix sense. Also Preliminary 

Test stochastic restricted �-� class estimator is compared with Preliminary Test stochastic 

restricted �-� class estimator. Finally a numerical example and a Monte Carlo simulation study are 

done to illustrate the theoretical findings of the proposed estimators. Based on the theoretical 

findings and numerical illustration, we can conclude that no estimator is always superior to other 

estimators. 
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APPENDIX 

 
Lemma 1: [28]  

Suppose B is a symmetric real )( nn× matrix, a is an )1( ×n  real vector and γ is a positive   

real number. Then the following two properties are equivalent 

 

a)  B aaγ ′− is nonnegative definite (n.n.d) 

b) B is n.n.d, )(Ba ℜ∈ and .a B a γ−′ ≤  

 
Lemma 2: [29] 

 

Let A be a symmetric ( )n n× matrix, and let a , 1a  , and 2a
 
be ( 1)n× vectors. Suppose that 

a) ( )a A∈ℜ ,and the real numbers φ and ψ satisfy 0φ ≠ and 0a A aφ ψ +′+ ≠ . Then 

we have the identity 

 

                          

[ ]
1

A aa A A aa A
a A a

ψ
φ ψ

φ φ ψ

+ + + +

+

 
′ ′+ = − ′+   

 

b) ( )j
a A∈ ℜ , 1, 2j =  , and the real number ρ satisfies 1 11 0.a A aρ +′+ ≠  Then we 

have ( )2 1 1a A a aρ ′∈ℜ + . 

 

Lemma 3: [30] 

 

Let C  be a nonnegative definite matrix and 1c , 2c  be linearly independent vectors. Furthermore 

for some generalized inverse 
−

C  of C , let
jiij cCcf

−′= ; 2,1,2,1 == ji  and let 

 

                         

2 2

1 1

( ) ( )

( )( )

c I CC I CC c
s

c I CC I CC c

− −

− −

′ ′− −
=

′ − −
 

 

where )(1 Cc ℜ∈  and (.)ℜ  denote the column space of the corresponding matrix. Then we 

have 02211 ≥′−′+ ccccC  if and only if  

 

a) )(),( 21 CcCc ℜ∈ℜ∈ and 
2

11 22 12( 1)( 1)f f f+ − ≤  or 

b) ),(),( 121 cCcCc ℜ∈ℜ∉
 
and 

2

2 1 2 1( ) ( ) 1c sc C c sc s
−′− − ≤ −  

 

and all expressions in (a) and (b) are independent of the choice of
−

C . 
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Lemma 4: [31] 

 

Let 1β̂  and 2β̂  be two linear estimator of β . Suppose that 1 2
ˆ ˆ( ) ( )D D Dβ β= −  is positive 

definite then 1 2
ˆ ˆ( ) ( )MSE MSEβ β∆ = − is nonnegative definite if and only 

if
1

2 1 1 2( ) 1b D b b b
−′ ′+ ≤ , where jb  denotes the bias vector of ˆ

j
β , 1, 2.j =  

 

Lemma 5: [32] 

 

Let n n×  matrices 0M > , 0N >  (or 0N ≥ ), then M N>  if and only if ( )1

1 1NMλ − < . 

where ( )1

1 NMλ −
is the largest eigenvalue of the matrix

1NM −
. 
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