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Abstract

In this paper we define the k-restrictly norm constant rk(A) of a matrix A to be used in compressed
sensing and give better error estimations on recovering compressive signals with noise using the
matrix Ã ≡ A

rk(A)
. Furthermore, we define the notion of k-restricted invertibility of A, which is

equivalent to that Ã ≡ A/rk(A) obeys the RIP of order k. And by using the Q. Mo and S. Li
idea and T. Cai and A. Zhang idea, we establish the sufficient condition for the restricted isometry
constant δ̃k (k ≥ s) of Ã under the assumption that A is k-restrictly invertible. In particular, if
δ̃s < 0.5 and δ̃2s < 0.828, then an unknown compressive signal with noise can be recovered.

Keywords: Compressed sensing, Restricted norm constants, Restricted invertible, Restricted isometry
constants, Restricted isometry property, Sparse approximation, Sparse signal recovery.

1 Introduction
This paper introduces the theory of compressed sensing(CS). For a signal x ∈ Rn, let ‖x‖1 be l1
norm of x and ‖x‖2 be l2 norm of x. Let x be a sparse or nearly sparse vector. Compressed sensing
aims to recover high-dimensional signal (for example: images signal, voice signal, code signal...etc.)
from only a few samples or linear measurements. Formally, one considers the following model:

y = Ax + z, (1.1)

where A is a m× n matrix(m < n) and z is an unknown noise term.
Our goal is to reconstruct an unknown signal x based on A and y are given. Then we consider

reconstructing x as the solution x? to the optimization problem

min
x
‖x‖1, subject to ‖y −Ax‖2 ≤ ε, (1.2)
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where ε is an upper bound on the the size of the noisy contribution.
In fact, a crucial issue is to research good conditions under which the inequality

‖x− x?‖2 ≤ C0‖x− xT0‖1 + C1ε, (1.3)

for some suitable constants C0 and C1, where T0 is any location of {1, 2, · · · , n} with number |T0|
of elements of T0 and xT0 is the restriction of x to indices in T0. One of the most generally known
condition for CS theory is the restricted isometry property(RIP) introduced by (1). When we discuss
our proposed results, it is an important notion. The RIP needs that the subsets of columns of A for all
locations in {1, 2, · · · , n} behave nearly orthonormal system. In detail, a matrix A satisfies the RIP of
order s if there exists a constant δ with 0 < δ < 1 such that

(1− δ)‖a‖22 ≤ ‖Aa‖22 ≤ (1 + δ)‖a‖22 (1.4)

for all s-sparse vectors a. A vector is said to be an s-sparse vector if it has at most s nonzero entries.
The minimum δ satisfying the above restrictions is said to be the restricted isometry constant and is
denoted by δs.
Many researchers has been shown that l1 optimization can recover an unknown signal in noiseless
case and noisy case under various sufficient conditions on δs or δ2s when A obeys the RIP. For
example, E.J. Candès and T. Tao have proved that if δ2s <

√
2 − 1, then an unknown signal can be

recovered (1). Later, S. Foucart and M. Lai have improved the bound to δ2s < 0.4531 (2). Others,
δ2s < 0.4652 is used by (3), δ2s < 0.4721 for cases such that s is a multiple of 4 or s is very large by (4),
δ2s < 0.4734 for the case such that s is very large by (3) and δs < 0.307 by (4). In a resent paper, Q.
Mo and S. Li have improved the sufficient condition to δ2s < 0.4931 for general case and δ2s < 0.6569
for the special case such that n ≤ 4s (5). T. Cai and A. Zhang have improved the sufficient condition
to δs < 0.333 for general case. (6). T. Cai and A. Zhang have improved the sufficient condition to δk
in case of k ≥ 4

3
s in particular δ2s < 0.707. (7). H. Inoue has defined the notion of weak RIP that

weakened the notion of RIP and evaluated the solution of CS under the assumption of only the weak
RIP. (8). H. Inoue has evaluated the solution of CS without the condition of RIP. (9).
In this paper we define the k-restricted norm constant rk(A) (simply, rk) by

rk(A) ≡ max{‖AT ‖; T ⊂ {1, 2, · · · , n}, |T | = k},

where AT is the m × |T | matrix composed of these columns for T and ‖ · ‖ is operator norm and
research good conditions under which the inequality (1.3) holds by considering the following equality
(1.5) instead of (1.1):

ỹ = Ãx + z̃ (1.5)

where ỹ ≡ y
rk

, Ã ≡ A
rk

and z̃ ≡ z
rk

. Since {a ∈ Rn; ‖y −Aa‖2 ≤ ε} = {a ∈ Rn; ‖ỹ − Ãa‖2 ≤ ε
rk
},

it follows that the solution x? to the optimization problem (1.1) is the same as that to (1.5). When
A is a matrix with uniformly bounded entries, that is, |aij | ≤ 1 for each 1 ≤ i ≤ m and 1 ≤ j ≤ n,
rk(A) ≤

√
ms. In particular, if A is the DFT matrix with entries:

ajt = e−i2πjt/n , 0 ≤ j, t ≤ n− 1,

then rk(A) ≤ min
(√

mk,
√
n
)

. We also need the notion of restricted invertibility of A. The matrix A

is called k-restrictly invertible if (A?TAT )
1
2 is invertible for any subset T of {1, 2, · · · , n} with |T | = k.(

if and only if AT is an injection for any subset T of {1, 2, · · ·n} with |T | = k if and only if the column
vectors {ai; i ∈ T} of A is independent for any T of {1, 2, · · · , n} with |T | = k.) It is shown in
Lemma 2.1 that A is k-restrictly invertible if and only if Ã ≡ A

rk
obey the RIP of order k and rk(Ã) ≤ 1.

Hence we can make use of results for RIP and in particular, the Candès idea, the Cai et al. idea
and the Mo and Li idea. The first main propose is to show that if A is s-restrictly invertible and
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δ̃s <
2

2+
√
5
≈ 0.472, where δ̃s is the restricted isometry constant for Ã ≡ A

rs
, and if A is 2s-restrictly

invertible and the restricted isometry constant δ̃2s < 0.661, then inequality (1.3) holds. The second is
to obtain the better sufficient conditions of δ̃s < 0.5 and δ̃2s < 0.828 by using the results of [(6),(7)].

Our analysis is very simple and elementary. We introduce the proposed results using the E.J.
Candès idea, the T. Cai et al. idea, the Q. Mo and S. Li idea and the T. Cai and A. Zhang idea. We
regard Theorem 3.1, Theorem 3.2, Theorem 3.3 and Theorem 3.5 as the main results in this paper.
Otherwise, in Section 2, we prepare some notions and lemmas to prove main theorems. In Section
3, we introduce new bounds of δs and δk(k > s).

2 Preliminaries and Some Lemmas
In this section, we prepare some lemmas needed for the proofs of Theorem 3.1 and Theorem 3.3.

Lemma 2.1. Let k be a natural number with k < n. Then A is k-restrictly invertible if and only if
Ã ≡ A

rk
obeys the RIP of order k. If this is true, then

δ̃k = 1− 1

(rkwk)2

and (
1− δ̃k

)
‖a‖22 ≤ ‖Ãa‖22 ≤ ‖a‖22,

equivalently

r2k

(
1− δ̃k

)
‖a‖22 ≤ ‖Aa‖22 ≤ r2k‖a‖22

for all k-sparse vector a in Rn, where δ̃k is the restricted isometry constant for Ã and

wk ≡ min
{
‖ (A?TAT )

− 1
2 ‖; T ⊂ {1, 2, · · · , n} with |T | = k

}
.

Proof. Suppose that A is k-restrictly invertible. Then we have

1

wk
‖a‖2 ≤ ‖Aa‖2 ≤ rk‖a‖2

for all k-sparse vector a in Rn. Hence, rkwk ≥ 1 and(
1−

(
1− 1

(rkwk)2

))
‖a‖22 ≤ ‖Ãa‖22 ≤ ‖a‖22

for all k-sparse vector a, which implies that Ã obeys the RIP of order k and

δ̃k ≤ 1− 1

(rkwk)2
. (2.1)

Conversely, suppose that Ã obeys the RIP of order k. Then, since(
1− δ̃k

)
‖a‖22 ≤ ‖Ãa‖22 ≤ ‖a‖22

for all k-sparse vector a, it follows that A is k-restrictly invertible and δ̃ ≥ 1 − 1
(rkwk)

2 , which implies

by (2.1) that δ̃k = 1− 1
(rkwk)

2 . This completes the proof.
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Lemma 2.2. Take any t ≥ 1 and positive integers s′, s′′ such that ts′′ is an integer. Suppose that A is
(s′ + s′′)-restrictly invertible. Then,

| < Ãa′, Ãa′′ > | ≤ 1

2
√
t
δ̃s′+s′′‖a′‖2‖a′′‖2 (2.2)

for any vectors a′,a′′ ∈ Rn with disjoint supports and sparsity ts′′ and s′, respectively.

Proof. We make use of the square root lifting inequality (10);

θs′,ts′′ ≤
1√
t
θs′,s′′ , t ≥ 1, (2.3)

where θk,k′ is the k, k′-restricted orthogonality constant. The k, k′-restricted orthogonality constant is
the smallest number that satisfies

| < Ac, Ac′ > | ≤ θk,k′‖c‖2‖c′‖2

for all k-sparse vector c and k′-sparse vector c′ with disjoint supports. Take arbitrary s′-sparse vector
a′ and s′′-sparse vector a′′ with disjoint supports. Then we show

| < Ãa′, Ãa′′ > | ≤ δ̃s′+s′′

2
‖a′‖2‖a′′‖2. (2.4)

Indeed, it is sufficient to show this inequality without loss of generality in case ‖a′‖2 = ‖a′′‖2 = 1.
Since Ã obeys the RIP of order (s′ + s′′) and rs′+s′′(Ã) ≤ 1, it follows that

4 < Ãa′, Ãa′′ > = ‖Ã(a′ + a′′)‖22 − ‖Ã(a′ − a′′)‖22
≤ ‖a′ + a′′‖22 − (1− δ̃s)‖a′ − a′′‖22
= 2δ̃s′+s′′

and

4 < Ãa′, Ãa′′ > ≥ (1− δ̃s)‖a′ + a′′‖22 − ‖a′ − a′′‖22
= −2δ̃s′+s′′ ,

which implies that

| < Ãa′, Ãa′′ > | ≤ 1

2
δ̃s′+s′′ .

Hence we have

θs′,s′′ ≤
1

2
δ̃s′+s′′ . (2.5)

By (2.3) and (2.5) we have

| < Ãa′, Ãa′′ > | ≤ θts′′,s′‖a′‖2‖a′′‖2

≤ 1√
t
θs′′,s′‖a′‖2‖a′′‖2

≤ 1

2
√
t
δ̃s′+s′′‖a′‖2‖a′′‖2

for all ts′′-sparse vector a′ and s′-sparse vector a′′ with disjoint supports.

Lemma 2.3. For any a ∈ Rk, we have

‖a‖2 ≤
1√
k
‖a‖1 +

√
k

4

(
max
1≤i≤k

|ai| − min
1≤i≤k

|ai|
)
. (2.6)
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Proof. The proof of this lemma can be obtained by [(4), Proposition 2.1].

Suppose x is an original signal we need to recover and x? is the solution of CS optimization problem
(1.2). Let h ≡ x? − x and h = (h1, · · · , hn). For simplicity, we assume that the index of h is sorted
by |h1| ≥ |h2| ≥ · · · ≥ |hn|. Throughout this paper, let T0 be an arbitrary location of {1, 2, · · · , n}
with |T0| = s and let {T1, T2, · · · , Tl} be a decomposition of {1, 2, · · · , n} with |T1| = s, |Tk| = s′

(2 ≤ k ≤ l − 1) and 1 ≤ |Tl| ≡ r ≤ s′, where |T | is number of elements of T . We consider the
decomposition of h as follows:

hT1 = (h
(T1)
1 , h

(T1)
2 , · · · , h(T1)

s , 0, · · · , 0)

hT2 = (0, · · · , 0, h(T2)
1 , · · · , h(T2)

s′ , 0, · · · , 0)

...

hTl−1 = (0, · · · , 0, h(Tl−1)

1 , · · · , h(Tl−1)

s′ , 0, · · · , 0)

hTl = (0, · · · 0, h(Tl)
1 , · · · , h(Tl)

r ).

This is due to the T. Cai et al. idea (4) in case of s = s′. We have the following Lemma 2.4–Lemma
2.10 for the decomposition (hT1 ,hT2 , · · · ,hTl) of h. By definition of CS optimization (1.2), we have
the following

Lemma 2.4. We have

‖hTc
0
‖1 ≤ 2‖x− xT0‖1 + ‖hT0‖1. (2.7)

Refer to (11) for the proof of Lemma 2.3. T. Cai et al. have obtained a similar result for the location T1.

Lemma 2.5. For |T0| = |T1| = s, we have

‖hTc
1
‖1 ≤ 2‖x− xT0‖1 + ‖hT1‖1. (2.8)

Proof. Since |T c0 ∩ T1| = |T0 ∩ T c1 |, we have ‖hT0∩Tc
1
‖1 ≤ ‖hTc

0∩T1‖1, which implies by (2.7) that

‖hTc
1
‖1 = ‖hT0∩Tc

1
‖1 + ‖hTc

0
‖1 − ‖hT1∩Tc

0
‖1

≤ 2‖x− xT0‖1 + ‖hT1‖1
+2
(
‖hT0∩Tc

1
‖1 − ‖hT1∩Tc

0
‖1
)

≤ 2‖x− xT0‖1 + ‖hT1‖1.

Lemma 2.6. We have ∑
i≥2

‖hTi‖2 ≤ 2√
s′
‖x− xT0‖1

+

( √
s√
s′

+

√
s′

4
√
s

)
‖hT1‖2. (2.9)

Proof. By using Lemma 2.3, we have

‖hTi‖2 ≤
1√
s′
‖hTi‖1 +

√
s′

4

(
|h(Ti)

1 | − |h(Ti+1)
1 |

)
, 3 ≤ i ≤ l − 1,
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which implies by Lemma 2.4 that

∑
i≥2

‖hTi‖2 ≤ 1√
s′

∑
i≥2

‖hTi‖1 +

√
s′

4
|h(T2)

1 | (2.10)

≤ 2√
s′
‖x− xT0‖1 +

( √
s√
s′

+

√
s′

4
√
s

)
‖hT1‖2.

Similarly we have the following

Lemma 2.7. Let s′ < s. We consider the decomposition T1 = {T ′1, T ′′1 } of T1 with |T ′1| = s′ and
|T ′′1 | = s′′. Then, s′ = (1− t)s, s′′ = ts for some t ∈ (0, 1) and∑

i≥2

‖hTi‖2 ≤ 2√
s(1− t)

‖x− xT0‖1

+

(
1√

1− t
+

√
1− t
4

)
‖hT1‖2. (2.11)

We put ‖hT2‖1 ≡ p
∑
i≥2 ‖hTi‖1 = p‖hTc

1
‖1. Then 0 ≤ p ≤ 1 and

∑
i≥3 ‖hTi‖1 = (1 − p)‖hTc

1
‖1.

Then the following Lemma 2.8 is easily shown and Lemma 2.9 is also easily shown by using the
inequality (2.10).

Lemma 2.8. We have ∑
i≥3

‖hTi‖
2
2 <

p(1− p)
s′

‖hTc
1
‖21. (2.12)

Proof. This follows from∑
i≥3

‖hTi‖
2
2 ≤ |h(T3)

1 |
∑
i≥3

‖hTi‖1

≤ 1

s′
‖hT2‖1

∑
i≥2

‖hTi‖1 − ‖hT2‖1


=

p

s′
(1− p)‖hTc

1
‖21.

Lemma 2.9. We have ∑
i≥3

‖hTi‖2 <
1− 3p/4√

s′
‖hTc

1
‖1. (2.13)

Proof. By (2.10), we have

√
s′
∑
i≥3

‖hTi‖2 ≤
∑
i≥3

‖hTi‖1 +
s′

4
|h(T3)

1 |

≤
∑
i≥3

‖hTi‖1 +
1

4
‖hT2‖1

=

(
1− 3

4
p

)
‖hTc

1
‖1.
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Lemma 2.10. (i) Let s′ ≤ s. Suppose that A is (s+ s′)-restrictly invertible. Then,

‖
∑
i≥3

ÃhTi‖
2
2 ≤ 1

2s′
((2− δs+s′) p(1− p)

+δs+s′

(
1− 3

4
p

)2

)‖hTc
1
‖21. (2.14)

(ii) Let s′ > s. Suppose that A is 2s′-restrictly invertible. Then,

‖
∑
i≥3

ÃhTi‖
2
2 ≤ 1

2s′
((2− δ2s′) p(1− p)

+δ2s′

(
1− 3

4
p

)2

)‖hTc
1
‖21. (2.15)

Proof. (i) Since Ã obeys the RIP of order (s+s′) and r2s′(A) ≤ 1, it follows from Lemma 2.2, Lemma
2.7 and Lemma 2.8 that

‖
∑
i≥3

ÃhTi‖
2
2

=
∑
i≥3

‖ÃhTi‖
2
2 + 2

∑
3≤i<j≤l

< ÃhTi , ÃhTj >

≤
∑
i≥3

‖hTi‖
2
2 + 2

∑
3≤i<j≤l

δ̃2s′

2
‖hTi‖2‖hTj‖2

≤
∑
i≥3

(
1− δ̃s+s′

2

)
‖hTi‖

2
2 +

δ̃s+s′

2

∑
i≥3

‖hTi‖
2
2

+2
∑

3≤i<j≤l

δ̃2s′

2
‖hTi‖2‖hTj‖2


=

(
1− δ̃s+s′

2

)∑
i≥3

‖hTi‖
2
2 +

δ̃s+s′

2

∑
i≥3

‖hTi‖2

2

≤
(

1− δ̃s+s′

2

)
p(1− p)

s′
‖hTc

i
‖21

+
δ̃s+s′

2s′

(
1− 3

4
p

)2

‖hTc
i
‖21

=
1

2s′

((
2− δ̃s+s′

)
p(1− p) + δ̃s+s′

(
1− 3

4
p

)2

)‖hTc
i
‖21.

(2.16)

(ii) This is shown similarly to (i).

3 Main results
In this section, we introduce the main results of the sufficient condition of δk(k ≥ s) under the
assumption that A is restrictly invertible.
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3.1 Bound for δ̃s
We have established the sufficient condition δ̃s for CS optimization problem in Theorem 3.1 and
Theorem 3.2.

Theorem 3.1. Assume that A is s-restrictly invertible and δ̃s < 2

2+
√
5
≈ 0.472. Then, the solution x?

to (1.2) obeys

‖x− x?‖2 ≤ C0‖x− xT0‖1 + C1ε, (3.1)

where

C0 =
9δ̃s

2
√

5s
(

1−
√

5+2
2

δ̃s
) , C1 =

2

rs
(

1−
√
5+2
2

δ̃s
) .

Proof. Let {T1, T2, · · · , Tl} be a decomposition of {1, 2, · · · , n} with |T1| = s, |Tk| = s′ < s(2 ≤ k ≤
l − 1) and 1 ≤ |Tl| ≡ r ≤ s′. We consider the decomposition T1 = {T ′1, T ′′1 } of T1 with |T ′1| = s′ and
|T ′′1 | = s′′. Then, s′ = (1− t)s and s′′ = ts for some t ∈ (0, 1). Since Ã ≡ A

rs
obeys the RIP of order

s = s′ + s′′ = 1
t
s′′, it follows from Lemma 2.2 that

| < ÃhT1 , ÃhTj > | ≤
1

2
√
t
δ̃s‖hT1‖2‖hTj‖2, j ≥ 2,

which implies by rs(Ã) ≤ 1 that

(1− δ̃s)‖hT1‖
2
2 ≤ < ÃhT1 , Ãh−

∑
j≥2

ÃhTj >

≤ 2‖ÃhT1‖2ε+
∑
j≥2

| < ÃhT1 , ÃhTj > |

≤ 2

rs
ε‖hT1‖2

+
1

2
√
t
δ̃s‖hT1‖2

∑
j≥2

‖hTj‖2

 .

Thus, by Lemma 2.7 and the above inequality, we have

(1− δ̃s)‖hT1‖2 ≤ 2

rs
ε+

δ̃s√
(1− t)ts

‖x− xT0‖1

+
1

2
√
t

(
1√

1− t
+

√
1− t
4

)
δ̃s‖hT1‖2.

(3.2)

Here, put f(t) = 1√
t

(
1√
1−t +

√
1−t
4

)
. Then, f is increasing when 5

9
< t < 1 and decreasing when

0 < t < 5
9
. Thus, when t = 5

9
, we have

(1− δ̃s)‖hT1‖2 ≤ 2

rs
ε+

9

2
√

5s
δ̃s‖x− xT0‖1

+

√
5

2
δ̃s‖hT1‖2, (3.3)

so that by assumption δ̃s < 2

2+
√
5
≈ 0.472,

‖hT1‖2 ≤
1

1− (
√

5 + 1)δ̃s

(
2

rs
ε+

9

2
√

5s
δ̃s‖x− xT0‖1

)
. (3.4)
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Furthermore, it follows from Lemma 2.7 that

‖hTc
1
‖2 ≤

∑
j≥2

‖hTj‖2 ≤
3√
s
‖x− xT0‖1 +

5

3
‖hT1‖2, (3.5)

which implies by (3.4) that

‖x− x?‖2 ≤ ‖hT1‖2 + ‖hTc
1
‖2 ≤ C0‖x− xT0‖1 + C1ε.

This completes the proof.

By using Theorem 3.3 in (6), we obtain a better result than that of Theorem 3.1.

Theorem 3.2. Assume that A is s-restrictly invertible and δ̃s <
1
2

= 0.5. Then, the solution x?

to (1.2) obeys

‖x− x?‖2 ≤ D0‖x− xT0‖1 +D1ε,

where

D0 =

2

(√
δ̃s(1− 2δ̃s)− (2−

√
2)δ̃s + 1

)
(1− 2δ̃s)

√
s

,

D1 =
2
√

2

(1− 2δ̃s)rs
.

Proof. Since A is s-restrictly invertible, we have
1

ws
‖a‖2 ≤ ‖Aa‖2 ≤ rs‖a‖2

for all s-sparse vectors a in Rn. We here put Â ≡ A/
√

(rsws)2+1
√

2ws
and δ̂s = (rsws)

2−1

(rsws)2+1
. Then we have

(1− δ̂s)‖a‖22 ≤ ‖Âa‖22 ≤ (1 + δ̂s)‖a‖22
for all s-sparse vectors a in Rn, that is, Â obeys the RIP of order s with the restricted isometry
constant δ̂s. Furthermore, by (2.1) we have

δ̃s = 1− 1

(rsws)2
<

1

2
,

which implies

δ̂s = 1− 2

1 + (rsws)2
<

1

3
.

Considering the following equality (3.6) instead of (1.1):

ŷ = Âx + ẑ, (3.6)

where ŷ = y√
q
, Â = A√

q
and ẑ = z√

q
(here, q denotes

√
(rsws)2+1
√

2ws
), it follows from Theorem 3.3 in (6)

that

‖x? − x‖2 ≤
2
√

2

(
2δ̂s +

√
(1− 3δ̂s)δ̂s

)
+ 2(1− 3δ̂s)

1− 3δ̂s

‖x− xT0‖1√
s

+
2

√
2(1 + δ̂s)

1− 3δ̂s

ε

q

= D0‖x− xT0‖1 +D1ε.

This completes the proof.
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3.2 Bound for δ̃k (s < k)

Using the E.J. Candès decomposition {T1, T2, · · · , Tq} of T c0 with |Tk| = s (k = 1, · · · , q) and
|h(T1)

1 | ≥ |h(T1)
2 | ≥ · · · ≥ |h(T1)

s | ≥ |h(T2)
1 | ≥ |h(T2)

2 | ≥ · · · , Q. Mo and S. Li have obtained a new
bound of the isometry constant δ2s (5). In Theorem 3.3, using the decomposition {T1, T2, · · · , Tl} of
{1, 2, · · · , n} stated in Section 2 and taking an arbitrary natural number s′, we have obtained a bound
of the isometry constant δ̃k (s < k) under the assumption that A is k-restrictly invertible..

Theorem 3.3. (i) Let 1
8
s ≤ s′ ≤ s. We assume A is (s + s′)-restrictly invertible and

√
s√
s′
αs,s′ < 1,

where

αs,s′ =

√√√√ 4(2 + 3δ̃s+s′ − 4δ̃2s+s′)

(1− δ̃s+s′)(64− 57δ̃s+s′)
.

Then,

‖x− x?‖2 ≤ E0‖x− xT0‖1 + E1ε, (3.7)

where

E0 =
2
(

1 +
(

1 +
√
s′

4
√
s

)
αs,s′

)
√
s′
(
1−

√
s
s′αs,s′

) ,

E1 =
2
√

2
(

1 +
√

s
s′ +

√
s′

4
√
s

)
rs+s′

√
1− δ̃s+s′

(
1−

√
s
s′αs,s′

) .

(ii) Let s′ ≥ s. We assume that A is 2s′-restrictly invertible and
√
s√
s′
αs′ < 1, where

αs′ =

√
4(2 + 3δ̃2s′ − 4δ̃22s′)

(1− δ̃2s′)(64− 57δ̃2s′)
.

Then,

‖x− x?‖2 ≤ E′0‖x− xT0‖1 + E′1ε, (3.8)

where

E′0 =
2
(

1 +
(

1 +
√
s′

4
√
s

)
αs′
)

√
s′
(
1−

√
s
s′αs′

) ,

E′1 =
2
√

2
(

1 +
√

s
s′ +

√
s′

4
√
s

)
r2s′
√

1− δ̃2s′
(
1−

√
s
s′αs′

) .
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Proof. (i) Let 1
8
s ≤ s′ ≤ s. By the definition of RIP and Lemma 2.10, we have(

1− δ̃s+s′
)
‖hT1‖

2
2

= (1− δ̃s+s′)‖hT1∪T2‖
2
2 − (1− δ̃s+s′)‖hT2‖

2
2

≤ ‖ÃhT1∪T2‖
2
2 − (1− δ̃s+s′)‖hT2‖

2
2

≤ ‖Ãh−
∑
j≥3

ÃhTj‖
2
2 −

(1− δ̃s+s′)
s′

p2‖hTc
1
‖21

≤

 2

rs+s′
ε+ ‖

∑
j≥3

ÃhTj‖2

2

− (1− δ̃s+s′)
s′

p2‖hTc
1
‖21

≤ 4

r2s+s′
ε2 +

4

rs+s′
ε

1√
2s′

×

√
(2− δ̃s+s′)p(1− p) + δ̃s+s′

(
1− 3

4
p

)2

‖hTc
1
‖1

+
1

2s′
((2− δ̃s+s′)p(1− p) + δ̃s+s′

(
1− 3

4
p

)2

−2(1− δ̃s+s′)p2
)
‖hTc

1
‖21.

Since √
(2− δ̃s+s′)p(1− p) + δ̃s+s′

(
1− 3

4
p

)2

≤

√
8(2− δ̃s+s′)
32− 25δ̃s+s′

,

(2− δ̃s+s′)p(1− p) + δ̃s+s′

(
1− 3

4
p

)2

−2(1− δ̃s+s′)p2 ≤
8(2 + 3δ̃s+s′ − 4δ̃2s+s′)

64− 57δ̃s+s′

and

8(2− δ̃s+s′)
32− 25δ̃s+s′

≤ 2
8(2 + 3δ̃s+s′ − 4δ̃2s+s′)

64− 57δ̃s+s′
,

we have

(1− δ̃s+s′)‖hT1‖
2
2

≤

 2
√

2

rs+s′
ε+

√
1

2s′

√√√√8(2 + 3δ̃s+s′ − 4δ̃2s+s′)

64− 57δ̃s+s′
‖hTc

1
‖1


2

,

which implies by Lemma 2.4 that

‖hT1‖2 ≤
2
√

2

rs+s′
√

1− δ̃s+s′
ε+

αs,s′√
s′

(2‖x− xT0‖1 + ‖hT1‖1) .
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By the assumption
√
s√
s′
αs,s′ < 1, we have

‖hT1‖2 ≤ 2
√

2

rs+s′
√

1− δ̃s+s′
(
1−

√
s
s′αs,s′

)ε
+

2αs,s′√
s′
(
1−

√
s
s′αs,s′

)‖x− xT0‖1, (3.9)

which implies by Lemma 2.6 that

‖x− x?‖2 ≤ ‖hT1‖2 +
∑
j≥2

‖hTj‖2

≤
(

1 +

√
s

s′
+

√
s′

4
√
s

)
‖hT1‖2

+
2√
s′
‖x− xT0‖1

≤
2
(

1 +
(

1 +
√
s′

4
√
s

)
αs,s′

)
√
s′
(
1−

√
s
s′αs,s′

) ‖x− xT0‖1

+
2
√

2
(

1 +
√

s
s′ +

√
s′

4
√
s

)
rs+s′

√
1− δ̃s+s′

(
1−

√
s
s′αs,s′

)ε. (3.10)

(ii) This is shown similarly to (i).

We here find the bound of the restricted isometry δ̃. by the condition
√

s
s′α. < 1 in Theorem 3.2.

Let p ≡ s′

s
> 1

8
. Then the equality

(57p+ 16)t2 − (121p+ 12)t+ 64p− 8 = 0, 0 < t < 1 (3.11)

has the unique solution tp and the following hold:
When 1

8
< p ≤ 1, the condition

√
s
s′αs,s′ < 1 in Theorem 3.2, (i) holds if and only if

δ(1+p)s < tp. (3.12)

When p ≥ 1, the condition
√

s
s′αs′ < 1 in Theorem 3.2, (ii) holds if and only if

δ2ps < tp. (3.13)

Putting p = 1 in (3.12), we obtain the following result for bound for δ̃2s.

Corollary 3.4. We assume that A is 2s-restrictly invertible and δ̃2s < 133−
√
1337

146
≈ 0.661. Then,

‖x− x?‖2 ≤ E0‖x− xT0‖1 + E1ε,

where

E0 =
2
(
1 + 5

4
αs
)

√
s(1− αs)

,

E1 =
9
√

2

2r2s
√

1− δ2s(1− αs)
,

αs = 2

√
2 + 3δ2s − 4δ22s

(1− δ2s)(64− 57δ2s)
.
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By taking various numbers p, we can obtain some others δ̃k(k > s). Here we give several bounds of
the isometry constants δ̃k.

Example
(i) Let p = 2

3
. Then t 2

3
= 0.551 and so δ̃ 5

3
s < 0.551.

(ii) Let p = 3
4
. Then t 3

4
= 0.585 and so δ̃ 7

4
s < 0.585.

(iii) Let p = 3
2
. Then t 3

2
= 0.749 and so δ̃3s < 0.749.

(iv) Let p = 2. Then t2 = 0.8 and so δ̃4s < 0.8.

Using Theorem 2.1 in (7), we have the following

Theorem 3.5. Assume that for any t ≥ 4
3
A is ts-restrictly invertible and

δ̃ts < 2
√
t− 1

(√
t−
√
t− 1

)
. (3.14)

Then, the solution x? to (1.2) obeys

‖x− x?‖2 ≤ F0‖x− xT0‖1 + F1ε,

where

F0 =


√

2δ̃ts +

√
t
(√

t−1
t

(2− δ̃ts)− δ̃ts
)
δ̃ts

t
(√

t−1
t

(2− δ̃ts)− δ̃ts
) + 1

 2√
s

F1 =
8
√
t(t− 1)(2− δ̃ts)(1 + δ̃ts)

t
(√

t−1
t

(2− δ̃ts)− δ̃ts
) 1

rts
.

Proof. This is proved similarly to Theorem 3.2. Since A is ts-restrictly invertible, Â ≡ A/
√

(rtswts)2+1
√
2wts

obeys the RIP of order ts with the restricted isometry constant δ̂ts = (rtswts)
2−1

(rtswts)2+1
. Then since

δ̃ts = 1− 1

(rtswts)2
< 2
√
t− 1(

√
t−
√
t− 1),

it follows that δ̂ts <
√

t−1
t

, which implies by Theorem 2.1 in (7) that

‖x? − x‖2 ≤


√

2δ̂ts +

√
t
(√

t−1
t
− δ̂ts

)
δ̂ts

t
(√

t−1
t
− δ̂ts

) + 1

 2√
s
‖x− xT0‖1

+
4

√
2t(t− 1)(1 + δ̂ts)

t
(√

t−1
t
− δ̂ts

) √
2wts√

(rtswts)2 + 1
ε

= F0‖x− xT0‖1 + F1ε.

This completes the proof.

Putting t = 2 in (3.14), we obtain the following result for bound for δ̃2s.
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Corollary 3.6. We assume that A is 2s-restrictly invertible and δ̃2s < 2(
√

2− 1) ≈ 0.828. Then

‖x− x‖2 ≤ F0‖x− xT0‖1 + F1ε,

where

F0 =

2(
√

2− δ̃2s) +

√(
2
√

2− (2 +
√

2)δ̃2s
)
δ̃2s

2
√

2− (2 +
√

2)δ̃2s

 2√
s
,

F1 =
8
√

2(2− δ̃2s)(1 + δ̃2s)

2
√

2− (2 +
√

2)δ̃2s

1

r2s
.
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