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Abstract: In order to achieve accurate fault diagnosis of rolling bearings, a hierarchical decision
fusion diagnosis method for rolling bearings is proposed. The hierarchical back propagation neural
networks (BPNNs) architecture includes a fault detection layer, fault isolation layer and fault degree
identification layer, which reduce the calculation cost and enhance the maintainability of the fault
diagnosis algorithm. By wavelet packet decomposition and signal reconstruction of the raw vibration
signal of a rolling bearing, the time-domain features of the reconstructed signals are extracted as
the input of each BPNN and the accuracy of fault detection, fault isolation and degree estimation
are improved. By using the majority voting method, the diagnosis results of multiple BPNNs are
fused, which avoids the missed diagnosis and misdiagnosis caused by the insensitivity of a vibration
characteristic to a specific fault. Finally, the proposed method is verified experimentally. The results
show that the proposed method can accurately detect the fault of rolling bearings, recognize the fault
location and estimate the fault severity under different operating conditions.

Keywords: rolling bearings; fault diagnosis; decision fusion; neural network

1. Introduction

The rolling bearing is one of the most frequently used parts in all kinds of mechanical
equipment. About 30% of the faults in rotating machinery are caused by bearing faults, and
the operating state of them will directly affect the machine’s performance [1,2]. Periodic
load and impact are the main causes of rolling bearing wear, cracking, spalling and other
failures [3]. Therefore, the importance of rolling bearing condition monitoring and fault
diagnosis has been increasingly recognized and has drawn extensive attention in the past
decades [4,5].

As the vibration signals contain abundant bearing state information, vibration-based
methods have been widely used in the past few decades. Common vibration signal feature
extraction methods include time-domain analysis [6], frequency domain analysis [7], time-
frequency analysis [8,9] and other nonlinear analysis methods [10–12]. Conventional time-
domain or frequency-domain methods have difficulty extracting minor fault information
from rolling bearing vibration signals with background noise [13]. Therefore, the vibration
signal processing methods came into being, such as sparse decomposition [14], empirical
mode decomposition (EMD) [15], ensemble local mean decomposition (ELMD) [16], short
time Fourier transform (STFT) [17], wavelet transform (WT) [18], wavelet packet transform
(WPT) [19], spectral kurtosis (SK) [20], fast spectral kurtosis (FK) [21], etc. A number of
cases have shown that wavelet packet decomposition combined with time-domain analysis
is an effective feature extraction method [22]. However, time-domain features are diverse;
thus, the selection of time-domain features has become the focus of research.

The traditional fault diagnosis method of rolling bearings is based on a classifier
for pattern recognition of rolling bearings, while fault detection, isolation and degree
estimation are realized [23–25]. However, this kind of method requires a large number of
training samples and high representative features, which can easily lead to misdiagnosis. In
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order to reduce the risk of misdiagnosis caused by the complexity of the diagnosis system,
Gan [26] proposed a hierarchical diagnosis network based on deep learning to identify
the fault mode of rolling bearings using a two-layer diagnosis network. The fault location
and fault degree were evaluated respectively. The results showed that the method has
high reliability. However, most bearings are running in normal condition. The contingency
of fault occurrence makes it very difficult to collect fault data and establish complete
diagnosis knowledge, so the double-layer diagnosis network will face the problem of
sample imbalance [27]. In addition, the key step of rolling bearing fault diagnosis is to
extract the appropriate eigenvalue from the bearing signal as the diagnostic index and to
realize the fault diagnosis of the rolling bearing by setting the threshold of the diagnostic
index [28]. However, feature extraction and selection mainly depend on human experience,
and fault diagnosis based on a single feature will be affected by external environmental
factors or human factors and the result of classification will be unstable [29]. How to obtain
fault diagnosis results with strong reliability and high stability and minimize the influence
of sample imbalance on bearing fault diagnosis is one of the challenges of rolling bearing
fault diagnosis.

Aiming at the above problems, a hierarchical back propagation neural networks
(BPNNs) diagnosis method of rolling bearings based on decision fusion is proposed.
The first layer is the fault detection decision fusion network, the second layer is the
fault isolation decision fusion network and the third layer is the fault degree estimation
decision fusion network. When the bearing is in normal condition, only the first layer is
activated and the calculation cost is low, which overcomes the problems in the literature [26].
Hierarchical diagnosis architecture avoids the difficulty of neural networks training caused
by incomplete raw data. In addition, when fault data is updated, only relevant neural
networks need to be updated, which enhances the maintainability of the method. The
wavelet packet decomposition and signal reconstruction of the raw vibration signals of
the rolling bearing is carried out, and the time-domain characteristics of the reconstructed
signals at each node are extracted as the input signal of the decision fusion networks, which
improves the accuracy of the diagnostic results. The decision fusion networks model of
each layer includes many BPNNs. A time-domain feature corresponds to a BPNN, and
the diagnostic results of BPNNs are fused by the majority voting method. The highest
diagnostic rate of the hierarchical diagnosis method can be obtained without artificial
selection of time-domain features. Finally, the proposed method is verified experimentally.
The results show that the proposed method can realize rolling bearing fault detection, fault
location isolation and fault degree estimation under different operating conditions.

The structure of the paper is organized as follows: Section 2 introduces wavelet packet
decomposition, BPNN and decision fusion based on the voting method, and proposes the
rolling bearing hierarchical diagnosis method. Section 3 verifies the proposed method by
experimental data. Section 4 provides the conclusion.

2. Method
2.1. Wavelet Packet Decomposition

Wavelet packet transform is an adaptive nonlinear analysis method, which can adap-
tively determine the resolution of different frequency bands and decompose the approxi-
mate part of the low frequency and the detailed part of the high frequency of the signal at
the same time. Wavelet packet decomposition improves the time-frequency local analysis
ability of the vibration signals, which can obtain higher time-domain resolution at high
frequency and has higher frequency-domain resolution in the low-frequency part [30].

The scale function ϕ(x) and the wavelet function ψ(x) are represented by µ(x). The
scale function on scale 0 is µ0,0(x), and the scale function and wavelet function on scale 1
are µ1,0(x) and µ1,1(x). 

µ1,0(x) =
√

2 ∑
k∈Z

hkµ0,0(2x− k)

µ1,1(x) =
√

2 ∑
k∈Z

gkµ0,0(2x− k)
(1)
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For any scale j, the recursive equation of the function system µj,m(x) can be de-
scribed as: 

µj,2m(x) =
√

2 ∑
k∈Z

hkµj−1,m(2x− k)

µj,2m+1(x) =
√

2 ∑
k∈Z

gkµj−1,m(2x− k)
(2)

µj,m(x) is the orthogonal wavelet packet of the wavelet function ψ(x). As shown in
Figure 1, a schematic diagram of n layer orthogonal wavelet packet decomposition for a
signal is presented. The raw signal S is decomposed by a wavelet packet with n layers,
and the signal at each node of each layer is decomposed into a low-frequency signal A
and high-frequency signal D by the filter. The n layer wavelet packet decomposition will
generate 2n nodes.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 3 of 20 
 

The scale function φ(x) and the wavelet function ψ(x) are represented by μ(x). The 

scale function on scale 0 is μ0,0(x), and the scale function and wavelet function on scale 1 

are μ1,0(x) and μ1,1(x). 

1,0 0,0

1,1 0,0

( ) 2 (2 )

( ) 2 (2 )

k

k Z

k

k Z

x h x k

x g x k

 

 





  



 





 (1) 

For any scale j, the recursive equation of the function system
, ( )j m x  can be de-

scribed as: 

,2 1,

,2 1 1,

( ) 2 (2 )

( ) 2 (2 )

j m k j m

k Z

j m k j m

k Z

x h x k

x g x k

 

 





 



  



 





 (2) 

μj,m(x) is the orthogonal wavelet packet of the wavelet function ψ(x). As shown in Figure 

1, a schematic diagram of n layer orthogonal wavelet packet decomposition for a signal is 

presented. The raw signal S is decomposed by a wavelet packet with n layers, and the 

signal at each node of each layer is decomposed into a low-frequency signal A and high-

frequency signal D by the filter. The n layer wavelet packet decomposition will generate 

2n nodes. 

 

Figure 1. Diagram of wavelet packet decomposition. S: raw signal; A: low-frequency signal; D: 

high-frequency signal. 

2.2. Back Propagation Neural Networks 

The raw vibration signals are decomposed by a wavelet packet with n layers, pro-

ducing s reconstructed signals. Features with the quantity of m are extracted from each 

reconstructed signal, forming the feature set F = {F1, F2, ..., Fm}. Fj is normalized to Xj = {Xj1, 

Xj2, ..., Xjs}T, which is the input of the jth BPNN. The number of output layer nodes is set 

to h, and the corresponding output is Dj = {Dj1, Dj2, ..., Djh}T. The jth BPNN consists of an 

input layer, hidden layer and output layer, as shown in Figure 2. 

Figure 1. Diagram of wavelet packet decomposition. S: raw signal; A: low-frequency signal; D:
high-frequency signal.

2.2. Back Propagation Neural Networks

The raw vibration signals are decomposed by a wavelet packet with n layers, pro-
ducing s reconstructed signals. Features with the quantity of m are extracted from each
reconstructed signal, forming the feature set F = {F1, F2, . . . , Fm}. Fj is normalized to
Xj = {Xj1, Xj2, . . . , Xjs}T, which is the input of the jth BPNN. The number of output layer
nodes is set to h, and the corresponding output is Dj = {Dj1, Dj2, . . . , Djh}T. The jth BPNN
consists of an input layer, hidden layer and output layer, as shown in Figure 2.
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Figure 2. Diagram of Back Propagation Neural Networks (BPNN).

In this paper, the training process of the jth BPNN consists of the following steps:

Step 1: Initialization.

The number of neurons in the hidden layer l is selected empirically. The weight ωjgk
connects the input layer with the hidden layer, and the weight ωjki connects the hidden
layer with the output layer. Then, the hidden layer threshold aj and the output layer
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threshold bj are initialized. The learning rate and neuronal excitation function are given
in advance.

Step 2: Hidden layer calculation.

The output Hj of the hidden layer is calculated according to the input vector X, weight
ωjgk and hidden layer threshold aj.

Hjk = f

(
s

∑
g=1

ωjgkXjg − ajk

)
, k = 1, 2, . . . , l; j = 1, 2, . . . , m (3)

where f is the hidden layer excitation function. There are many excitation functions for the
hidden layer, and the excitation function used in this paper is:

f (z) =
1

1 + e−z (4)

Step 3: The output calculation of the output layer.

The output of the jth BPNN Dj is calculated by the hidden layer output Hj, weight
ωjki and threshold bj.

Dji =
l

∑
k=1

Hjkωjki − bji, i = 1, 2, . . . , h; j = 1, 2, . . . , m (5)

Step 4: Error calculation.

The network prediction error ej is calculated based on the network prediction output
Dj and the expected output Yj.

eji = Yji − Dji, i = 1, 2, . . . , h (6)

Step 5: Weight update.

The network connection weights ωjgk and ωjki are updated by the network prediction
error ej.

ωjgk = ωjgk + ηHjk(1− Hjk) Xjg

h

∑
i=1

ωjkieji, g = 1, 2, . . . , s; k = 1, 2, . . . , l; j = 1, 2, . . . , m (7)

ωjki = ωjki + ηHjkeji, k = 1, 2, . . . , l; i = 1, 2, . . . , h; j = 1, 2, . . . , m (8)

where η is the learning ratio.

Step 6: Threshold update.

The network node threshold aj and bj are updated by the network prediction error ej.

ajk = ajk + ηHjk(1− Hjk)
h

∑
i=1

ωjkieji, k = 1, 2, . . . , l; j = 1, 2, . . . , m (9)

bji = bji + eji, i = 1, 2, . . . , h; j = 1, 2, . . . , m (10)

Step 7: Iteration judgement.

Determining whether the algorithm iteration ends, and if not, returning to step 2.

A desired accuracy, EExpect, is set. N is the sample number. If 1
N

N
∑

p=1
ej p > EExpect, a

hidden neuron is added and the process returns to the second step; if 1
N

N
∑

p=1
ej p ≤ EExpect,

the calculation is stopped.
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2.3. Decision Fusion Based on the Voting Method

The idea of decision fusion comes from ensemble learning. Ensemble learning is not
a single machine learning algorithm, but a method completing the task by building and
combining multiple machine learning algorithms, which can be applied for classification
problem integration, regression problem integration, feature selection integration, abnormal
detection integration and so on [31,32]. For feature selection, Tripathi et al. [33] applied the
data set with selected features to five base learners and aggregated the outputs obtained by
the base classifier by a weighted voting method to predict the final output. A deep neural
network algorithm, support vector machine (SVM) and decision tree c4.5 base classifiers
were adopted by Asadi et al. [31], and the decision strategy based on the maximum number
of votes was used to identify and classify botnets. Each ensemble learner produces a result,
so it is necessary to integrate the results of each base learner to obtain the final decision
result. A simple and effective way is to obtain the final decision result of multiple machine
learning algorithms by the voting method. The voting method mainly includes the majority
voting method [34] and the weighted voting method [33].

Inspired by the ensemble learning method, this paper makes use of the majority voting
method to fuse the diagnosis results of multiple BPNN classifiers trained by a single feature
set, which are extracted from all layers based on wavelet packet decomposition. Then, they
are sorted from most to least. Finally, based on the principle that the minority obeys the
majority, the diagnosis result with the largest number of votes is regarded as the decision
fusion diagnosis result. The decision fusion algorithm based on the voting method is
shown in Figure 3.
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In Figure 3, m characteristics F1, F2, . . . , Fm are extracted from the vibration signals
and are normalized to X1, X2, . . . , Xm as the input of m BPNN models Net1, Net2, . . . , Netm,
and then h kinds of fault modes of bearings are recognized, The output results D1, D2, . . . ,
Dm are Synthesized into a diagnostic matrix Dh×m. Then, each row of the matrix Dh×m is
summed in order to get the scoring matrix Qh×1 = {Q1; Q2; . . . ; Qh}. Each Qi (i = 1, 2, . . . ,
h) represents the score of the fault mode i, respectively. Finally, the highest score Qr is the
output, which is the maximum of the output Q1, Q2, . . . , Qh.

Setting fault discrimination matrix C:

{C1; C2; . . . ; Ch} = Ih×h (11)

where Ci (i = 1, 2, . . . , h) represents the fault mode and Ih×h is an h-dimensional identity
matrix. h is the total number of bearing state modes, which determines the number of
output layer nodes.

The corresponding fault mode of the fault discrimination matrix C is found according
to the angle mark r of the highest score, which is the decision fusion diagnosis result of the
current state.

It can be seen that decision fusion is the fusion of multiple bearing fault diagnosis
results based on a single time-domain feature. It is not necessary to screen the features,
and the diagnostic results under each feature contribute to the final decision results. The
decision fusion method takes into account the diagnostic advantages of each single time-
domain feature for rolling bearing signals, and the diagnostic results based on the reasoning
of each single time-domain feature will be comprehensively analyzed. To some extent,
it can avoid the misdiagnosis and missed diagnosis of rolling bearing faults caused by
the sudden change of environmental or human factors, which is helpful in reflecting the
healthy condition of rolling bearings more comprehensively and accurately.

In addition, this paper adopts the winner-take-all strategy, which is suitable for single
faults. For multi-fault cases, a feasible method is to sort according to the score of Q1, Q2,
. . . , Qh, from high to low, and output the order of the possibility of the fault mode, which
can realize simultaneous fault diagnosis.

2.4. Hierarchical Fault Diagnosis Strategy

The traditional fault diagnosis method based on machine learning is to consider
the fault position and severity synthetically. However, most of the rolling bearings are
in normal condition, the fault occurs by chance and the evolution of the fault degree is
nonlinear. In addition, in the actual process, the complete bearing fault samples are difficult
to obtain. In this case, the fault diagnosis network that can judge the fault at the same
time is often difficult to train because of the complexity of its network structure. In this
paper, the hierarchical fault diagnosis architecture of rolling bearings is proposed, and the
hierarchical diagnosis of rolling bearings is carried out in the progressive way. Further, the
fault diagnosis of rolling bearings is divided into three layers: the first layer is the fault
detection layer, which is used to judge whether the current state of the bearing is normal or
not. The second layer is the fault isolation layer, and its goal is to identify the fault position
of the bearing diagnosed as having a faulty state in the first layer. The third layer is the
fault degree estimation layer, which is to further estimate the severity of the fault position
of the rolling bearing.

The advantages of the hierarchical diagnosis proposed in this paper are as follows:
the function of each layer of the neural network is relatively simple, the corresponding
level of fault diagnosis network is trained by using the obtained fault samples, and the
network training time is reduced. It is also relatively easy to improve the accuracy of
fault identification. In addition, updating the fault algorithm is relatively easy, as it is only
necessary to retrain the affected neural network to achieve the algorithm update, compared
with the traditional diagnosis method; it also has better flexibility. Hierarchical decision
fusion fault diagnosis methods include a training stage and a diagnosis stage.
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(1) Training Stage

The training stage of the hierarchical decision fusion fault diagnosis method is shown
in Figure 4.
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Step 1: Generate training samples.

According to the hierarchical fault diagnosis architecture, five kinds of training sam-
ples are designed, including a bearing state training sample, fault position training sample,
inner race fault degree training sample, ball fault degree training sample and an outer race
fault degree training sample.

Step 2: Wavelet packet decomposition.

Selecting the appropriate wavelet basis and the number of decomposition layers,
each kind of sample data is decomposed into a wavelet packet, and the raw signal is
decomposed into a series of reconstructed signals with equal bandwidth.

Step 3: Feature extraction.

There are m features extracted from the wavelet packet reconstruction signal, and the
feature set F = {F1, F2, . . . , Fm} is obtained. The dimension of the feature subset Fj (j = 1, 2,
. . . , m) depends on the number of decomposition layers n by the wavelet packet. In this
paper, all the training samples are decomposed by three-layer wavelet packets. Hence,
s = 8, and the feature subset can be described as Fj = {Fj

1, Fj
2, . . . , Fj

8}T.

Step 4: Normalization.

Because neurons are highly sensitive to numbers in the range of [−1, 1], the bearing
feature data cannot be directly input into the BPNN, so it is necessary to normalize the
feature set. The min–max normalization method is used in this paper.

u =
u− umin

umax − umin
(12)
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where u and u are the original data of the feature set and the normalized data, respectively.
umax is the maximum value in the original feature set, and umin is the minimum value
in the original feature set. Here, u represents the feature value Fj

s and u represents the
normalized eigenvalue Xj

s.

Step 5: Train BPNNs.

Using the training process detailed in Section 2.2, 5 kinds of training samples are
studied, including the bearing state training sample, the fault position training sample,
the inner race fault degree training sample, the ball fault degree training sample and the
outer race fault degree training sample. A hierarchical decision fusion network of rolling
bearings is established capable of fault detection, isolation and fault degree estimation.

(2) Diagnosis Stage

In the application stage, the flow of the hierarchical decision fusion fault diagnosis
method is shown in Figure 5.
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Step 1: Database collection and feature extraction

The vibration signals of the rolling bearing are collected in real time. N samples of
the same length are randomly sampled from the raw vibration signal. Wavelet packet
decomposition and signal reconstruction of data samples are carried out to extract m kinds
of features of reconstructed signals and form feature vectors [F1, F2, . . . , Fm]. Finally, the
feature vector is normalized.

Step 2: Fault detection

m normalized feature vectors are input into m fault detection neural networks (BPNN_
FD), and the current state of the bearing is judged by decision fusion. Step 2 and Step 3 are
entered into only when the bearing is in a faulty state. Because most of the bearings are in
the normal state during use, such a processing method will reduce the operational burden
of the algorithm.

Step 3: Fault isolation

When a bearing is detected as being in a faulty state, m normalized feature vectors are
input into m fault isolation neural networks (BPNN_FI). After decision fusion, it can be
determined whether the bearing fault has occurred in the inner race, ball or outer race.

Step 4: Fault severity estimation

After identifying the location where the bearing fault has occurred, m normalized
feature vectors are input to m fault severity estimation neural networks corresponding to
the fault location. After decision fusion, the severity of the fault location (degree I, degree
II, degree III) is determined. In this paper, there are 11 inner race fault severity estimation
neural networks (BPNN_IR), 11 ball fault severity estimation neural networks (BPNN_BA)
and 11 outer race fault severity estimation neural networks (BPNN_OR).

3. Case Study
3.1. Experimental Platform

Experimental data was provided by the bearing data center of Western Reserve
University [35]. The experiment platform was mainly composed of a motor, torque sensor,
power meter and electronic control equipment, as shown in Figure 6. The type of rolling
bearing was SKF6205. The single-point faults in the inner raceway, the outer raceway and
ball were introduced to the test bearings using electro-discharge machining with fault
diameters of 0.007 inches, 0.014 inches and 0.021 inches. Vibration data was collected by
using accelerometers, which were installed at the 12 o’clock position at the fan end of the
motor housing.
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Figure 6. Experimental platform of rolling bearing faults.

According to the health state, different fault location and different fault degree, the
data of 100 segments of length 2048 were randomly selected, generating 10 rolling bearing
fault diagnosis sample data sets, as shown in Table 1. Each data set contained 30 training
samples and 70 test samples. The sampling frequency was 12 kHz, the motor speed was
1797 rpm and the load was 0.
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Table 1. Description of experimental data sets.

Data Set
Number

Fault
Location Fault Degree

Fault
Diameter
(Inches)

Number of
Training
Samples

Number of
Testing

Samples

1 Healthy Healthy 0 30 70
2 Inner race IR_I 0.007 30 70
3 Inner race IR_II 0.014 30 70
4 Inner race IR_III 0.021 30 70
5 Ball BA_I 0.007 30 70
6 Ball BA_II 0.014 30 70
7 Ball BA_III 0.021 30 70
8 Outer race OR_I 0.007 30 70
9 Outer race OR_II 0.014 30 70

10 Outer race OR_III 0.021 30 70

In this paper, the hierarchical decision fusion diagnosis method includes a fault
detection layer, a fault isolation layer and a fault severity estimation layer. Each diagnostic
layer contains multiple BPNNs. In order to realize the function of these neural networks, it
is necessary to train through the corresponding samples, as shown in Tables 2–4. Taking
the fault detection layer as an example, the output result of the BPNN_FD is healthy or
faulty. The total number of training samples was set to 60, where 30 normal samples came
from data set 1 in Table 1, and the other 30 fault samples were randomly selected from data
sets 2–10.

Table 2. Sample settings for the fault detection layer.

Name of Network Classification Number of
Training Samples

Number of
Testing Samples Sources of Data

BPNN_FD
Healthy 30 70 Data set 1
Faulty 30 70 Data sets 2–10

Table 3. Sample settings for the fault isolation layer.

Name of Network Classification Number of
Training Samples

Number of
Testing Samples Sources of Data

BPNN_FI
Inner race fault 30 70 Data sets 2–4

Ball fault 30 70 Data sets 5–7
Outer race fault 30 70 Data sets 8–10

Table 4. Sample settings for the fault severity estimation layer.

Name of Network Classification Number of
Training Samples

Number of
Testing Samples Sources of Data

BPNN_IR
Inner race 30 70 Data set 2
Inner race 30 70 Data set 5
Inner race 30 70 Data set 8

BPNN_BA
Ball 30 70 Data set 3
Ball 30 70 Data set 6
Ball 30 70 Data set 9

BPNN_OR
Outer race 30 70 Data set 4
Outer race 30 70 Data set 7
Outer race 30 70 Data set 10

3.2. Feature Extraction

According to the hierarchical decision fusion diagnosis process of rolling bearings
shown in Figure 5, wavelet analysis was used to reconstruct vibration signals. A wavelet
basis was chosen as the db4, to decompose the three-layer wavelet packet of vibration
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signals. Wavelet packet decomposition formed 8 node coefficients, corresponding to
8 frequency band signals, representing all the information of the rolling bearing fault
characteristics, as shown in Figure 7. The time-domain features (feature 1–11) of each node
reconstructed signal after wavelet packet decomposition were extracted. As shown in
Table 5, there are 11 features of wavelet packet reconstructed signals.
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Table 5. Time-domain characteristics of rolling bearings.

Feature
Number Symbol Time-Domain Feature Formula

1 Ma Maximum Ma = max{x1, x2, . . . , xn} (13)
2 Mi Minimum Mi = min{x1, x2, . . . , xn} (14)
3 Pk Peak-to-peak value Pk = Ma −Mi (15)

4 Av Average rectified value Av = 1
n

n
∑

i=1
|xi| (16)

5 st Standard deviation st =
(

1
n

n
∑

i=1
(xi − x)2

) 1
2

(17)

6 ku Kurtosis ku =

1
n

n
∑

i=1
(xi−x)4

(
1
n

n
∑

i=1
(xi−x)2

)2 (18)

7 rm Root mean square rm =

√
1
n

n
∑

i=1
|xi|2 (19)

8 S Waveform factor S = rm/Av (20)
9 C Peak factor C = Pk/rm (21)
10 I Pulse factor I = Pk/Av (22)
11 L Margin factor L = Pk/

(
1
n

n
∑

i=1

√
|xi|
)

(23)
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3.3. Diagnostic Results of Rolling Bearings
3.3.1. Fault Detection Results of Rolling Bearings

Each time-domain feature of each sample of wavelet packet reconstruction signals of
rolling bearings is input into the input layer of BPNN, and the fault diagnosis of rolling
bearing is carried out by the stratified diagnosis method.

In the rolling bearing fault detection layer, it is determined whether there is a fault
in the rolling bearing. According to the sample set of Table 2, the diagnostic accuracy of
the fault detection layer based on a single time-domain feature (serial number 1–11) and
decision fusion based on a time-domain feature (serial number 12) is tested and compared,
as shown in Figure 8.
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Figure 8. Diagnostic accuracy of fault detection for the rolling bearing. 1: Ma; 2: Mi; 3: Pk; 4: Av; 5: st;
6: ku; 7: rm; 8: S; 9: C; 10: I; 11: L; 12: decision fusion.

It can be seen from the diagram that feature 4, feature 5 and feature 7 have a good
effect on the diagnosis of wavelet packet reconstruction signal when fault detection is based
on a single feature, the diagnosis rate is more than 98% and the diagnosis effect based on
other features is relatively poor. When the decision fusion method (number 12) is used to
diagnose the fault detection layer, the diagnosis rate increases to 100%, which is a higher
diagnostic accuracy than the single-feature-based diagnosis results.

3.3.2. Fault Isolation Results of Rolling Bearings

Assuming that there is a fault in the fault detection layer, it is necessary to isolate the
fault of the rolling bearing. According to the testing sample set of Table 3, the location of
the fault is diagnosed. The result is shown in Figure 9.
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Figure 9. Diagnostic accuracy of fault isolation for the rolling bearing. 1: Ma; 2: Mi; 3: Pk; 4: Av; 5: st;
6: ku; 7: rm; 8: S; 9: C; 10: I; 11: L; 12: decision fusion.

From the diagram, when the bearing is diagnosed based on the average rectified
value (feature 4), standard deviation (feature 5) and root mean square (feature 7), the fault
diagnosis rate is more than 99.9%. However, for the cases based on kurtosis (feature 6),
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waveform factor (feature 8), peak factor (feature 9), pulse factor (feature 10) and margin
factor (feature 11), the diagnostic accuracy is lower than 70%. When using the decision
fusion method (number 12) for fault isolation layer diagnosis, the diagnostic accuracy
is 98.57%. Although slightly lower than the highest diagnostic accuracy under a single
feature, it is a combination of multiple features, which can avoid the possible error caused
by the artificial selection of features. Therefore, a small reduction in diagnostic accuracy
caused by decision fusion is acceptable.

3.3.3. Fault Severity Estimation of Rolling Bearings

After the fault location diagnosis of the rolling bearing is obtained in the fault isolation
layer, the degree of fault is investigated.

(1) Fault severity estimation results based on single time-domain features

For the same rolling bearing vibration signal sample, the hierarchical diagnosis based
on different time-domain features will produce different diagnosis results. This is because
the experimental data cannot achieve absolute idealization, it is easy to be interfered with
by environmental factors or human factors in the actual experiment, and the selection of
data samples also has a certain randomness. According to the test sample set in Table 4,
the fault of a bearing may be between two fault degrees, which leads to the hierarchical
diagnosis based on different time-domain features and gives different diagnosis results,
as shown in Figures 10–12. Among them, the black points represent the expected output
of the test sample and the other different-colored points represent the diagnosis results of
the rolling bearing under different single time-domain features. If the dots of other colors
coincide with the black dots, the diagnosis is correct; if not, the diagnosis is misdiagnosed
or missed.
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(2) Fault severity estimation results based on the decision fusion method

By the decision fusion method, the fault severity estimation results of multiple single
time-domain features based on wavelet packet reconstruction signals are fused, and the
comprehensive evaluation results of rolling bearing fault severity are obtained, as shown in
Figures 13–15. The black point represents the expected result based on the decision fusion
method, and the red point represents the actual diagnosis result based on the decision
fusion method.
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decision fusion.
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(3) The diagnosis result analysis of the fault severity estimation layer

According to the diagnosis results in Figures 10 and 13, the diagnosis results of inner
race fault severity under each single feature and fusion decision are obtained, as shown in
Figure 16.
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It can be seen from the diagram that the diagnostic effect of the wavelet packet
reconstruction signal under other single time-domain features is higher than 90%, except
for the kurtosis feature (feature 6). In particular, features 1–5, 7 and 8 have an excellent
diagnostic effect on the fault severity estimation of the inner race, and the fault diagnosis
rate is more than 99%. The result of decision fusion diagnosis under each time-domain
feature (number 12) is a fault diagnosis rate of 100% of the wavelet packet reconstructed
signal, which is not lower than that of the wavelet packet reconstructed signal under
a single feature. This shows that the decision fusion diagnosis method improves the
reliability of fault diagnosis of the rolling bearing inner ring to some extent.

According to the diagnosis results in Figures 11 and 14, the diagnosis results of ball
fault degree under each single feature and fusion decision are obtained, as shown in
Figure 17.
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Figure 17. Diagnosis result of fault severity of ball under different features. 1: Ma; 2: Mi; 3: Pk; 4: Av;
5: st; 6: ku; 7: rm; 8: S; 9: C; 10: I; 11: L; 12: decision fusion.

It can be seen from the diagram that there is a big gap in the diagnostic accuracy
of ball fault degree based on different single features. Among them, feature 4, feature 5
and feature 7 of the wavelet packet reconstruction signal have a good diagnostic effect on
rolling body fault degree, and fault diagnosis accuracy is more than 90%. The diagnostic
accuracy based on kurtosis (feature 6) and waveform factor (feature 8) is obviously lower
than that based on other single features. The diagnosis results based on each single feature
are fused (number 12), and the fault diagnosis accuracy of wavelet packet reconstruction
signal is 98.57%.
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According to the diagnosis results in Figures 12 and 15, the diagnosis results of outer
race fault degree under each single feature and fusion decision are obtained, as shown in
Figure 18.
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Figure 18. Diagnosis result of the fault severity of the outer race under different features. 1: Ma; 2:
Mi; 3: Pk; 4: Av; 5: st; 6: ku; 7: rm; 8: S; 9: C; 10: I; 11: L; 12: decision fusion.

It can be seen from the diagram that when the fault degree of the outer race is
identified, the diagnostic accuracy of all single time-domain features for the fault degree
of the outer race of the rolling bearing is over 98%. The diagnosis results under each
time-domain feature are fused (number 12), and the fault diagnosis rate of wavelet packet
reconstruction signal is 100%, which shows that the decision fusion diagnosis method is
more comprehensive and reliable than the single-feature diagnosis when diagnosing the
fault degree of the outer race of the rolling bearing.

(4) Comparison with other methods

Based on the bearing data of Western Reserve University, the published typical di-
agnosis results are shown in Table 6. It can be seen that the proposed method not only
realizes the accurate detection of bearing faults, but also can accurately locate the fault
location and estimate the degree of damage.

Table 6. Comparison with other methods.

Method Fault Detection
Layer

Fault Isolation
Layer

Inner Race
Degree Layer

Ball Degree
Layer

Outer Race
Degree Layer Total

WPE + SVM [36] - - - - - 88.9
WPE + CNN [37] - - - - - 98.8
CNN + WT [38] - - - - - 91.3

BPNN [26] - 95.23 96.79 99.93 88.74 95.14
SVM [26] - 96.84 94.14 98.1 96.75 96.48

Method in this paper 100 98.57 100 99.05 100 99.52

3.3.4. The Influence of WPD on Fault Diagnosis

In this paper, the time-domain features in Table 5 of the wavelet packet reconstruction
signal of the rolling bearing are extracted, and a stratified diagnosis of the rolling bearing
is carried out based on the decision fusion method. In order to prove the positive effect
of wavelet packet decomposition and signal reconstruction on fault diagnosis, the time-
domain features in Table 5 of raw vibration signals without wavelet packet decomposition
are also extracted in this section, and the results of stratified diagnosis are compared in
Figure 19. It can be seen from the diagram that after wavelet packet signal reconstruction,
the diagnostic accuracy of the rolling bearing in all layers has been improved to differ-
ent degrees. Therefore, in the fault diagnosis of rolling bearings, wavelet packet signal
reconstruction is an effective data preprocessing method and will play a positive role in
the diagnosis results.
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3.3.5. Fault Diagnosis Results under Variable Load

All the above diagnosis results are based on zero load (HP0) vibration data fault diag-
nosis. In order to verify the adaptability of the proposed method to load change, the fault
data under three constant load conditions, which are 1 horsepower (HP1), 2 horsepower
(HP2) and 3 horsepower (HP3), respectively, were input into BPNNs based on zero load
data training. Decision fusion diagnosis was used to diagnose rolling bearings.

From Table 7, it can be seen that when the diagnostic condition was extended to other
loads, the fault diagnosis in each layer could still reach a higher diagnostic rate, except
for the fault degree diagnosis of the ball. Especially for fault detection, inner race fault
degree estimation and outer race fault degree estimation, the diagnosis rate did not change
too much after changing the working condition to a nonzero load. The proposed method
has good adaptability to load change. In addition, the diagnostic rate of wavelet packet
reconstruction signal is higher than that of raw vibration signal under the same working
condition, which indicates the necessity of wavelet packet reconstruction of the original
vibration signal.

Table 7. Diagnosis result under variable load

Diagnostic Layer Fault Detection Fault Isolation Inner Race
Degree Ball Degree Outer Race

Degree

Signal Raw
Signal

WPT
Signal

Raw
Signal

WPT
Signal

Raw
Signal

WPT
Signal

Raw
Signal

WPT
Signal

Raw
Signal

WPT
Signal

Load

HP0 97.86 100 91.43 98.57 100 100 80.95 99.05 100 100
HP0→HP1 97.14 98.57 87.9 93.81 96.19 100 72.38 76.19 100 100
HP0→HP2 98.57 97.14 90.48 89.05 98.1 100 80.48 80.95 100 100
HP0→HP3 96.43 99.29 86.19 95.24 97.62 100 68.57 70.95 99.52 100

4. Conclusions

In this paper, a hierarchical diagnosis method for rolling bearings based on decision
fusion is proposed, and bearing data of West Reserve University are used to verify the
method. The results show that the proposed method can accurately realize the detection of
bearing running state, the isolation of fault position and estimation of the fault severity
of the bearing. Because most bearings are in a normal state, so the calculation cost of the
proposed method is low. At the same time, the hierarchical diagnosis method only needs to
update the related neural networks, which enhances the maintainability of the algorithm.
In addition, the proposed method has good adaptability to load change. Compared with
the raw vibration signal, the fault detection accuracy is equivalent, but the accuracy of
fault isolation and fault severity estimation is obviously improved. The decision fusion
is realized by the voting method, which reflects the comprehensive diagnosis results
of each characteristic and avoids the missed diagnosis and misdiagnosis caused by the
insensitivity of certain characteristics to specific faults. However, whether this method is
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suitable for bearing multi-fault diagnosis needs further study. In addition, decision fusion
considering frequency-domain feature diagnosis results and fusion of different machine
learning algorithms need to be further studied.
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