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ABSTRACT 
 

From time immemorial, natural products were the source for food and medicine. The unique 
properties of plants helped mankind to survive through centuries. The unique chemical structure 
resulted in peculiar pharmacodynamic and pharmacokinetic properties and thus made them 
suitable drug candidates. Last century witnessed emergence of a wide array of new epidemic 
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diseases. To discover drugs to combat these situations are really a challenging task for the 
scientists. This can be simplified by mining the data regarding ADME and toxicokinetic profile of 
plants. This will help the research community to narrow down the search strategies for new drug 
development and streamline the advancements in drug research. This article gives an insight about 
the preliminary techniques adopted for in silico drug designing, toxicokinetics and ADME profiling of 
a newly discovered plant or research on an existing plant/plant part for a new disease. 
 

 
Keywords: Drug discovery; ADME; toxicokinetic; computational approaches. 
 

1. INTRODUCTION 
 
Natural products are the major sources for food 
and medicine for the humans from time 
immemorial. The unique chemical structure and 
pharmacodynamic and pharmacokinetic 
properties made them suitable drug candidates. 
It offers therapeutic alternatives showing wide 
range of biological activities [1]. As per the WHO 
statistics, about 40% of approved drugs are 
derived from natural product resources. In the 
past few years there is a huge increase in the 
publicly accessible natural product database [2]. 
Over 120 different natural product databases and 
collections are published since 2010. All these 
database targets to the therapeutic indication of 
products. The data mining proves that only a few 
data is available on the toxicokinetic and ADME 
profile [3]. 

 
Absorption, distribution, metabolism, and 
excretion properties plays a significant role in 
drug development. About 45% of drug 
candidates fails due to poor ADME results. The 
preclinical ADME studies reduced the number 
but the drug toxicity remains as a major hurdle 
[4]. The non optimal ADME and toxicity ends 
upon later stage failures in drug development 
resulting in a huge wastage of time, energy, and 
money. The in-silico models contribute largely 
towards the drug optimization by improving the 
ADME prediction [5]. 

 
In silico toxicology analysis models includes 
computational approaches which visualize, 
simulate, analyse, or predict toxicity of drug 
molecules. It analyse the chemical and biological 
properties of molecules based upon the actual or 
virtual chemical structure of the concerned 
molecule. It is a predictive technique which 
retrieves relevant data regarding the effects of 
chemicals. It is intertwined with other branches of 
life sciences and uses information from 
computational tools to analyse beneficial or 
adverse effects envisaging toxicity endpoints of 
compounds [6].  

2. METHODS USED IN IN SILICO DRUG 
DESIGN 

 

“Drug discovery and development is a 
complicated, lengthy process which depends on 
pharmacokinetic data, effectiveness, safety 
profile and marketable reasons. The in-silico 
drug design is a newly emerging field in which 
different sides of basic research are combined to 
obtain a precise result. The important methods in 
in-silico drug design are as follows” [7]. 
 

1. Homology modelling: 
 

“It is a comparative modelling of protein and it 
allows to generate an unknown atomic resolution 
model of the “target” protein from its amino acid 
sequence and an experimental three-
dimensional structure of a related homologous 
protein” [7]. “It involves recognition of one or 
more identifiable protein structures probably to 
show resemblance with the structure of the query 
sequence to residues in the template sequence. 
It is reported that the protein structures are more 
conserved than protein sequence among 
homologous” [8]. “Since the protein structures 
are more conserved than DNA sequences, 
detectable levels of sequence similarity usually 
associated with substantial structural similarity. 
Bioinformatics software tools are used to 
generate the 3D structure of the target based on 
the known 3D structures of templates” [9]. “The 
Modeller is a popular tool in homology modelling, 
and SWISS-model repository is a database of 
protein structures created with homology 
modelling” [10,11]. 

 

2. Molecular docking: 
 

“It is a unique technique which envisages the 
favoured orientation of one molecule to another, 
when bound to each other to form a stable 
complex” [12]. “Molecular docking denotes ligand 
binding to its receptor or target protein. It can 
recognize and optimize drug candidates by 
examining and modelling molecular interactions 
between ligand and target macromolecules. It will 
generate multiple ligand conformations and 
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orientations and the most appropriate ones are 
selected” [13,14]. “There are several molecular 
docking tools available that includes Argus Dock, 
DOCK, FRED, eHITS, Auto Dock and FT Dock. 
Molecular modelling involves scoring methods 
that are used to rank the affinity of ligands to bind 
to the active site of a receptor. In virtual high 
throughput screening, compounds are docked 
into the active site and then scored to determine 
which one is more likely to bind tightly to the 
target macromolecule” [15]. 

 
3. Virtual high throughput screening: 

 
“It is a computational technique where large 
libraries of compounds are evaluated for their 
potential to bind specific sites on target 
molecules such as proteins, and well-matched 
compounds tested. The research in the drug 
discovery process involves virtual screening (VS) 
which is a computational method used for the 
rapid exploration of large libraries of chemical 
structures in order to identify those structures 
that are most likely to bind to a drug target, 
usually a protein receptor or enzyme” [16]. The 
term "virtual screening" is relatively new as 
compared to the more general and older concept 
of database searching. Walters, et al. defines, 
virtual screening as "automatically evaluating 
very large libraries of compounds" using a 
computer program [17]. “It is clear that VS has 
been a number game at large scale and it is 
focusing to find out answers of questions like 
how can we screen down the huge chemical 
space of over 1060 possible compounds to a 
practicable number that can be synthesized, 
purchased, and tested. It is less expensive than 
High-Throughput Screening, faster than 
conventional screening, which enables to scan 
many potential drug like molecules in very little 
time. HTS itself is a trial-and-error approach but 
can be better complemented by virtual 
screening” [18]. 

 
4. Quantitative structure activity relationship 

(QSAR): 

 
“Quantitative structure-activity relationships 
(QSAR) methods are used to show a relationship 
of structures and descriptors of compounds with 
their biological activities. These descriptors 
explain the properties like steric, topologic, 
electronic, and hydrophobic of numerous 
molecules, have been determined through 
empirical methods, and more recently by 
computational methods” [19]. 

5. Hologram quantitative structure activity 
relationship (HQSAR): 

 
“In Hologram QSAR, there is no need for precise 
3D information about the ligands. In this method, 
the molecule breaks to a molecular fingerprint 
encoding the frequency of occurrence of various 
kinds of molecular fragments. Simply, the 
minimum and maximum length of the fragments 
depends on the size of the fragment to be 
included in the hologram fingerprint. Molecular 
holograms are caused by a generation of linear 
and branched fragments, ranging in size from 4 
to 7atoms” [20]. 
 

6. Comparative molecular field analysis 
(CoMFA): 

 
“Comparative molecular field analysis (CoMFA) 
is a constructive novel drug development 
computational technique to explain structure 
activity relationship. It delivers values of ClogP 
which means the solvent repellent constraints the 
ligands and explains the steric and electrostatic 
values of the ligands” [21,22]. 
 

7. Comparative molecular similarity indices 
analysis (Co-MSIA): 

 
“Comparative Molecular Similarity Indices 
Analysis (CoMSIA) is recognized as one of the 
new 3DQSAR approaches. It is generally used in 
the drug discovery process to locate the common 
characteristics, essential for the proper biological 
receptor binding. This method deals with the 
steric and electrostatic characteristics, hydrogen 
bond acceptors, hydrogen bond donor and 
hydrophobic fields” [23]. 
 
8. 3D pharmacophore mapping: 
 

“The 3D pharmacophore search is an imperative, 
vigorous yet simple method to quickly recognize 
lead compounds alongside a preferred target. 
Conventionally, a pharmacophore is defined as 
the specific 3D arrangement of functional groups 
within a molecular framework that are 
indispensable to attach to an active site of an 
enzyme or bind to a macromolecule. It is 
essentially the first step to describe a 
pharmocophore to understand the interaction of 
a ligand with a receptor. Once a pharmacophore 
is recognized, the medicinal chemist utilizes the 
3D database search tools to retrieve novel 
compounds that are suitable for the 
pharmacophore model. The modern drug design 
process has been used to make it one of the 
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most successful computational tools because the 
search algorithms have made advancements 
over the years to efficiently identify and          
optimize lead focus combinatorial libraries               
and help in virtual high-throughput screening” 
[24]. 
 

9. Microarray analysis: 
 
“Microarray analysis is a DNA technology which 
plays a significant role in the advancement of 
biotechnology. These are basically properly 
arranged sets of known sequence DNA 
molecules. Each single feature drives on the 
array at the accurately demarcated position on 
the substrate. The identity of the DNA molecule 
associated to each feature does not change. 
Scientists use this information to know the results 
of their experiments. The microarray study helps 
scientists to perceive numerous genes in a small 
sample immediately and to carry out the analysis 
of the expression of these genes. That safety is 
given to facilitate biotechnology and 
pharmaceutical companies to identify target 
molecules. Microarray analysis can assist 
medical companies to participate in the selection 
of the most suitable candidates in clinical trials of 
new drugs. This has a potential as a future 
technology to help medical experts in the 
selection of the most effective drugs, or to help 
those with less side effects for individual patients. 
It has wide applications in many fields, such as 
transgenic animal studies, cancer tissue 
microarrays” [25]. 
 

10. Conformational analysis: 
 
“Conformational analysis deals with deformable 
molecules and their minimum energy 
configurations through various calculation 
methods and interaction networks which involves 
comparing a molecular receptor site of another 
molecule and calculating the most energetically 
satisfactory3-D conformation” [26]. 
 

11. Monte Carlo simulation: 
 
“The Monte Carlo simulation produces adequate 
different conformations of a system by computer 
simulation to permit the preferred 
thermodynamic, structural, and numerical 
properties to be calculated as a weighted 
average of these properties over these 
conformations. A valuable presentation has 
joined Monte Carlo sampling with flexible 
temperatures (simulated annealing) to enhance 
the fixing of ligands into active sites” [27]. 

12. Molecular dynamic (MD) simulation: 
 
“Molecular dynamics is an effective procedure 
and depends on the molecular motion simulation 
by solving Newton's equations of motion for each 
atom and increasing the speed and position of 
each atom by a small increase of the time 
duration. MD simulations characterize alternative 
methods to sample configuration space, based 
on the above-mentioned rule. That is shared with 
temperatures using "reasonable” which means 
that only the local area around the sampled 
point, and only relatively small barriers (a few 
tens of kJ / mol) are overcome. Generation may 
be different (local), minimum may be 
accomplished by selecting configuration 
appropriate times during the simulation and thus 
minimize these structures. MD methods utilize 
the inherent dynamics of the system to search 
deformation modes of low energy and can be 
used for sampling of the conformational space of 
a large confined system” [28]. 
 

3. METHODS FOR IN SILICO PREDICTIVE 
TOXICOLOGY 

 
Several approaches are developed for the 
prediction of in-silico toxicology. It is broadly 
classified into four major categories. 
 

1. Structure activity modelling: quantitative 
structure activity relationships (QSAR), 
expert systems, grouping and read-across 
techniques 

2. Chemo-informatics: generating molecular 
descriptors using computational tools 
including quantum chemical methods and 
molecular dynamics simulations for toxicity 
prediction 

3. Databases and gathering biological data 
that contain relations between chemicals 
and toxicity endpoints, databases for 
storing data about chemicals, toxicity and 
chemical properties 

4. Data mining and analysis: calculating 
molecular descriptors, generating a 
prediction model, evaluating the accuracy 
and interpreting the model, statistical 
methods and prebuilt models in web 
servers or standalone applications for 
predicting toxicity. 

 
“There are various procedures to unravel general 
or specific compound toxicity/safety and each 
method has respective strengths, limitations, the 
scope of application and interpretation. The 
underlying principle is to find the suitable and the 
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most effective method to address the particular 
issue. However, all the four categories mentioned 
in this section for in silico predictive tools are 
highly interrelated” [29]. 
 

4. TOOLS USED FOR PREDICTING 
TOXICITY ENDPOINTS OF DRUGS 

 

“In-silico predictive toxicology is used in 
combination with in vitro and in vivo experimental 
data obtained at the molecular, cellular, organ, 
organism, and population levels to provide the 
possibility of improved safety at molecular and 
functional changes occurring across multiple 
levels of biotic organization to characterize and 
evaluate interactions between potential hazards 
with the components of biological system. 
Predictive toxicology extrapolates quantifiable 
chemical toxicity end points and this application 
is a new paradigm for risk assessment” [30]. 

4.1 Advantages 
 
In following situations, these methods serve as 
an important tool for the hazard assessment of 
existing or newly introduced drug molecules    
[31]. 

 
1. Emergency situations where rapid 

assessment required to understand the 
knowledge on potential toxicity. 

2. Cases with limited availability of test 
material. 

3. Challenges for laboratory-based assays. 
4. Non feasibility of synthesis of complex test 

drug 
5. Situation demands a less time consuming 

and in-expensive experimental tests. 
6. Supports the principle of 3R (replacement, 

refinement, and reduction) 

 
Table 1. In silico tools used for predicting toxicity endpoints of drugs 

 

In silico methods Description Software/Database 

Quantitative structure activity 
relationship models 
 
 
 
 

Use molecular 
descriptors to predict 
chemical toxicity 

OECD QSAR 
Top-Kat 
Derek Nexus 
VEGA 
METEOR 
vLife-QSARpro 

Structural alerts and rule-based 
models 

Chemical structures 
that indicate or 
associate to toxicity 

OECD QSAR 
Tox-tree 
OCES 
Derek Nexuc 
HazardExpert 
Meteor 
CASE 
PASS 
Cat-SAR 

Read-across Predicting unknown 
toxicity of a chemical 
using similar chemicals 
with known toxicity 
from the same 
chemical category 

OECD QSAR 
Toxmatch 
Tox Tree 
AMBIT 
Ambit Discovery 
AIM 
DSSTox 
ChemlDplus 

Dose–response and time–
response models 

Relation between 
doses (or time) and the 
incidence of a defined 
biological effect. 

CEBS 
PubChem 
ToxRefDB 

Pharmacokinetic (PK) and 
Pharmacodynamics (PD) models 

PK models calculate 
concentration at a 
given time. PD models 
calculate effect at a 
given concentration 

WinNonlin 
Kinetica 
ADAPT 
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4.2 Applications of In-silico Toxicology: 
[31] 

 

It includes,  
 

1. Alternative to test data: These assays                
are alternative assays for animal                
testing assays. It is an alternative                
method to quickly fill the data gap in 
toxicity profile. 

2. As a part of weight of evidence in 
regulatory submissions: In current 
situation, regulatory frameworks accept 
only certain specific laboratory tests as 
endpoints. In such cases in silico 
assessment will complement the toxicology 
data.  

3. Mixtures assessment: The toxicology 
profile of mixtures is dangerous and much 
hazardous to assess in vitro and in vivo 
testing condition. Synergistic effects of 
such compounds can be better evaluated 
with in silico approaches. 

4. Assessment of impurities and degradation 
products: The chemicals or drug molecules 
may contain small level of impurities 
produced during the manufacturing 
process. The ICH M7 guidelines provides 
specific recommendations for assessing 
these impurities by using two 
complementary computational toxicology 
methodologies i.e. statistical based and 
expert rule-based models to predict the 
level of toxicity. 

5. Residues of plant protection products: This 
serves an effective alternative approach to 
evaluate the residue of plant protection 
products for dietary risk assessment of 
various plant products. 

6. Assessment of extractables and leachable: 
Medical devices, food contact substances, 
consumer product packaging materials etc 
may cause a risk for human health due to 
the release of potential toxic substances. 
An in-silico toxicology assessment will 
provide sufficient data for the risk 
assessment in these situations. 

7. Worker’s safety and occupational health: 
Chemicals using in many industries may 
possess unexplored mutagenicity, 
carcinogenicity, reproductive and 
development toxicity and acute toxicity. 
These potential toxic effects can be 
studied using in silico methods. In silico 
approaches utilises specific end points to 
predict major toxicological effects like 
respiratory sensitization. 

8. Metabolite analysis: The metabolites can 
present with increased or decreased risk of 
local or systemic toxicity effects when 
compared to parent chemical. If a reactive, 
toxic metabolite is formed by an organism, 
their identification, separation, and 
possible synthesis are challenging. In silico 
methods provide a practical alternative 
approach to understand the safety profile 
of potentially large number of chemicals as 
well as un explored metabolites. 

9. Ecotoxicology: Various chemical molecules 
are discharged into the environment which 
may cause potential harm. These parent 
compounds can be transformed into 
various additional chemicals by hydrolysis, 
redox-reactions or photolysis. Prediction of 
physico-chemical parameters supports the 
assessment of potential environmental 
exposure to the chemical.  

10. Green chemistry and safer alternatives: It 
identify drug molecules with a safer profile 
than existing one’s with toxicity potential. 
These assays will provide an insight about 
structural features which are responsible 
for toxicity.  

11. Selection of product development 
candidates: This provide a helpful 
approach to shortlist the drug candidates 
as it is inexpensive, rapid to perform, and 
high throughput. It helps in optimisation by 
suggesting the toxicophores. 

12. Emergency response situations: When 
there is an unexpected human exposure to 
some new chemical or drug molecules, this 
will help to evaluate the toxicity effects 
quickly. In the absence of previously 
generated data, this alone serves as a 
quick practical option to tackle the 
hazardous situation. 

13. Prioritizing chemical testing: this can help 
to prioritise the in vitro and in vivo 
toxicology testing based upon the chemical 
exposure and toxicity prediction based on 
potential toxicological liabilities. 

14. Rationalization of in vitro and in vivo study 
results: The results from different in silico 
models can be used in conjunction with 
biological data to infer the mechanism of 
action or mode of toxicity. This information 
will facilitate to tailor made the in vivo 
assays. 

 

4.3 ADME Prediction 
 
ADME prediction is used to describe the 
properties such as, absorption, distribution, 
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metabolism, and excretion of drugs. It is a useful 
tool to predict the pharmacological properties of 
drug candidates, especially during the pre-clinical 
stage of drug development. Usage of in-silico 
models in ADME prediction contributes to drug 
optimization and prevents late-stage drug 
candidate failures [32].  
 

4.4 Absorption 
 
“Absorption is predicted from water solubility, 
lipophilicity, and percentage of intestinal human 
absorption (HIA) properties. Water solubility is 
predicted using the Silicos IT LogSw descriptor 
of Swiss ADME. In the Swiss ADME LogSw 
scale, compounds with values less than (more 
negative than) −6 are poorly soluble. Lipophilicity 
was assessed using the logarithm of the n-
octanol/water partition coefficient, which is 
predicted using the Consensus 
LogPo/w descriptor of Swiss ADME. LogPo/w is 
closely related to transport processes, 
including membrane permeability, and 
distribution to different tissues and organs [33]. 
The general criteria to have good oral 
bioavailability i.e. good permeability and solubility 
is to have a moderate logP (0 < log P < 3)” [34].  
 

4.5 Distribution 
 
Distribution is predicted using the glycoprotein P 
(P-gp) substrate, blood–brain barrier (BBB) 
permeability and fraction unbound descriptors. 
“P-gp is an ATP-dependent drug-extracting 
pump, and it is found in various human tissues. 
All of the new synthesized molecules were 
predicted to be substrates of P-gp. The BBB is a 
complex structure that separates the central 
nervous system (CNS) from the peripheral 
tissue. In order to maintain homeostasis in the 

CNS, the BBB controls the transfer of material, 
nutrients and cells from the blood to the brain 
and from the brain to the blood. It also 
participates in the clearance of cellular 
metabolites and toxins from the brain to the 
blood” [35]. 

 

4.6 Metabolism 
 
“Metabolism is estimated using Swiss ADME, 
according to inhibition of the main cytochromes 
(CYP) of the P450 superfamily, namely CYP1A2, 
CYP2C19, CYP2C9, CYP2D6 and CYP3A4. 
CYP enzyme inhibition, a principal mechanism 
for metabolism-based drug–drug interactions, 
usually involves competition with another drug for 
the same enzyme binding site. Enzyme inhibition 
impairs the biotransformation or clearance of all 
clinically used drugs including several anticancer 
agents, resulting in higher plasma levels of drugs 
that influence the therapeutic outcome. If the 
drug is a prodrug, then the effect is decreased. 
Thus, inhibition of CYPs may lead to toxicity or 
lack of efficacy of a drug” [36]. 
 

4.7 Excretion 
 
“Excretion occurs primarily as a combination of 
hepatic and renal clearance, is related to 
bioavailability, and is important for determining 
dosing rates to achieve steady-state 
concentrations. Excretion values were predicted, 
using the total clearance (CLtot) descriptor 
of pkCSM-pharmacokinetics, to range from 0.02 
to 0.138 ml/min/kg” [37]. 
 

4.8 In silico Tools for ADME Prediction 
 

The major softwares and models used for in 
silico ADME prediction are tabulated below [38]. 

  
Table 2. Absorption, distribution, metabolism, and excretion models 

 

Software/model Features 

Cerius2-ADME Provides computational ADME/Tox prediction tools with the ability to 
predict problematic new chemical entities at an early stage. 

Physico-chemical 
laboratory 

Predicts pKa, LogP, LogD, solubility, boiling point, and vapour pressure. 

Artificial Intelligence 
software 

Uses the chemical descriptors and numerical modelling techniques. 
Series of predictive algorithms which are used to assess the likely 
ADMET properties of new chemical structures 

Predictive ADMET HIA model significantly improves the prediction of problematic 
compounds with respect to their passive absorption profiles. This model 
has addressed the issue of over-prediction of absorption, which has 
been a major problem with previous HIA models. 

iDEA™ predictive The absorption module predicts permeability and FDp over time. The 
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Software/model Features 

ADME stimulations 
system 

metabolism module predicts bioavailability, linked to the absorption 
module for inputs. 

ADME/Tox screens 
ADME boxes 

Classifies compounds as permeable (% HIA >10–15) or nonpermeable 
(% HIA < 10-15). Three modes of permeation are considered: 
paracellular, non-restricted transcellular, restricted transcellular. 

PreADME Web-based application for predicting ADME data and building drug-like 
chemical library using neural network with back propagation method. 

QikProp Results screens datasets of drug-like molecules, based on 2D and 3D 
descriptors reflecting Monte Carlo simulation studies as well as 
experiment 

GastroPlus 
QMPRPlus 

Biopharmaceutical property estimation, solubility, permeability, 
absorption, and distribution. Simulations and prediction of 
gastrointestinal dissolution, transit, and pharmacodynamics. 

VolSurf Predicts ADME properties using pre-calculated models; computes 
unique, ADME-relevant descriptors and creates QSAR models of 
bioactivity or property 

 

5. CONCLUSION 
 
In the present era, application of machine 
learning in prediction of toxicity profile of new 
drugs can be evaluated and documented. An 
increase in the access to data and computing 
power have contributed to the use of in silico 
methods for prediction of toxicity. Easily 
accessible open-source tools and heterogenous 
high dimensional data sets are equally available 
for pre-processing and predictive modelling of 
data. The success rates of these efforts improve 
over time. Most machine tools are often referred 
as “black boxes”, as the rational interpretations 
behind the underlying mechanisms are difficult. 
Even those models with high accuracy do not 
readily discloses the biological mechanisms 
behind predictions. The quality of data used for 
train a model is more vital than the choice of 
algorithm used. 
 
Even though the in-silico data is not sufficiently 
accurate to replace the in vitro and in vivo 
assays, they will provide a baseline idea about 
the toxicology profile of concerned drug entity. 
These in silico models do not consider dose or 
exposure into account for the toxicity study. So, 
they are unable to produce the absolute level of 
toxicity, but furnishes supplementary information 
for the overall risk assessment process. 
Therefore, data on internal exposure must be 
taken into consideration. The results obtained 
from these assays contributes to the screening 
process of new drugs. 
 
The in silico/in vitro/in vivo/PK profiling 
architecture of a new drug molecule is the vital 
ingredient in the drug discovery and development 
process. This can prioritise the candidates in 

drug development process. This proper 
establishment of in silico-in vitro correlation 
(ISIVC) and in vitro-in vivo correlation (IVIVC) will 
eventually increases the productivity of 
pharmaceutical industry. 

 
A wide variety of tools exists to assess the 
general toxicity and organ specific toxicity 
effects. Standardisation of in silico tool use and 
interpretation of results would greatly reduce the 
burden on both industry and regulatory 
authorities and will provide confidence for the 
use of these approaches. Integration and 
implementation of in silico methodologies for 
toxicity evaluation are rapidly evolving. In silico 
predictive toxicology enables regulation or safety 
formulation to impact the discovery of drugs with 
a superior safety profile. Development of more 
physiologically relevant predictive toxicity model 
systems, advanced algorithms and analysis 
methods will successfully replace in vitro and In 
vivo toxicity tests. 
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