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ABSTRACT 
 
Background: Escherichia coli O157, a Shiga toxin-producing serotype of E. coli implicated in 
severe foodborne diseases, is a major public health concern worldwide. Most human infections are 
attributed to the consumption of infected beef and contaminated bovine products. The burden of E. 
coli O157 disease is compounded by the extensive use of antibiotics in the animal production line 
which might lead to the selection for antibiotic resistance. The aim of this study was to describe the 
antibiotic resistance patterns of E. coli O157 isolates from cattle in Cameroon. 
Methods: Fifty-six E. coli O157 isolates previously obtained were subjected to antibiotic 
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susceptibility testing using the Kirby-Bauer disc diffusion technique. Polymerase chain reaction was 
used to screen the isolates for the presence of eight antibiotic resistance genes. 
Results: Antibiotics susceptibility profiling of the 56 isolates showed ofloxacin was the most active 
drug (55; 98.2%), followed by gentamicin (51; 91.1%). Ampicillin was the least active drug with only 
7 (12.5%) isolates susceptible. Multidrug resistance was a common phenomenon exhibited by 33 
isolates comprising 17 phenotypic profiles (A8-A24). The most frequent phenotypic profile was 
TET

R
STR

R
AMP

R
TRI

R
ERY

R
 (tetracycline, streptomycin, ampicillin, trimethoprim, and erythromycin 

resistance) which accounted for 17.0% of the resistant strains. All the 8 resistance genes 
investigated were observed in one or more isolates and genotypic resistance was generally 
consistent with the resistant phenotypes observed. The most commonly observed resistance genes 
were tetA (73.2%) and aac(3)-IV (57.1%). Five isolates had none of the resistance genes 
investigated while 25 carried at least three different resistance determinants. 
Conclusions: Cattle in Cameroon are infected with multidrug-resistant E. coli O157 and are a 
potential risk to consumers. Hence adequate animal food production measures should be 
prescribed and implemented to minimize the development and spread of antibiotic resistant E. coli 
O157.  
 

 

Keywords: E. coli O157; Cameroon; multidrug resistance; resistant gene profiles. 
 

1. INTRODUCTION  
 

Food borne pathogens including E. coli O157 are 
significant contributors to illness and death in 
developing countries and cost billions of dollars 
in medical care and economic loss [1,2]. 
Foodborne diseases have been largely attributed 
to changes in animal food production methods, 
farming habits and poor hygienic practices [3]. E.  
coli O157 was first reported as foodborne 
pathogen three decades ago in the USA, and 
since then, it remains an important public health 
problem, causing a disease spectrum ranging 
from non-bloody diarrhoea to bloody diarrhoea, 
haemolytic uremic syndrome, and other 
complications with high morbidity and fatality 
[4,5]. Cattle have been identified as the major 
reservoir of E. coli O157 although other animal 
species including sheep, goats, pigs, deer, 
rabbits, dogs, cats, rodents and wild birds have 
been implicated in the maintenance and 
transmission of the organism in the environment 
[6,7,8]. 
 

The emergence and spread of antibiotic resistant 
E. coli O157 is a matter of increasing concern 
globally. Although the use of antimicrobial 
therapy for human infections with Shiga toxin-
producing E. coli O157 is contraindicated, 
antibiotics are routinely used for disease 
prevention and growth promotion in animal 
production lines. These practices lead to the 
selection of antimicrobial resistance through 
stable genetic changes and specific mechanisms 
including mutation, transduction, transformation 
and or conjugation [9,10]. Thus, antimicrobial-
resistant bacteria carried by these animals may 
enter the human food chain through the 

consumption of meat or other animal products, 
through occupational exposure, farm runoffs, and 
other pathways, leading to prevention and 
treatment failures [11]. 
 
Since the first report of E. coli O157 infections in 
the African continent in 1992, the pathogen 
continues to spread in the continent with multiple 
cases reported in South Africa, Swaziland, 
Kenya, Nigeria, Ivory Coast, Gabon and the 
Central African Republic [12,13]. In order to 
understand the epidemiology of this pathogen, 
there is a need for continuous surveillance of E. 
coli O157 and the antimicrobial sensitivity pattern 
to understand the spread, geographic area-
dependent characteristics and public health 
implications. This study, therefore, sought to 
investigate the phenotypic and genotypic 
antibiotic resistance profiles of E. coli O157 
isolates in Cameroon. 
 

2. MATERIALS AND METHODS 
 

Fifty-six E. coli O157 isolates obtained from 
cattle across Cameroon at the abattoirs in Buea 
between October 2015 and September 2016 
were analysed in this study. Isolation of the E. 
coli O157 strains was done through the pre-
enrichment method for faecal specimen 
recommended by Wells et al. [14]. Presumptive 
E. coli O157 isolates were confirmed 
serologically using E. COLIPRO

TM
 O157 latex 

agglutination test (Hardy Diagnostics, USA) and 
molecularly using PCR targeting E. coli rfbEO157 
gene in the isolates (Fig. 1). The susceptibility of 
the isolates to antibiotic disks impregnated with 
streptomycin (10 μg), erythromycin (15 μg), 
tetracycline (30 μg), ampicillin (10 μg), 
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Fig. 1. Electrophoretic separation of amplified PCR products of singleplex rfbEO157 PCR. 
Positive control (lane 1), positive samples (lanes 3,5-7), negative samples (lane 2,4,8-11), 

negative control (lane 12), 100 bp DNA ladder (lane M) 
 
chloramphenicol (30 μg), ciprofloxacin (5 μg), 
ofloxacin (5 μg), trimethoprim (5 μg) and 
gentamicin (10 μg) (Becton, Dickson, Fisher 
Scientific, USA) was done using the Kirby-Bauer 
disc-diffusion technique as recommended by the 
Clinical and Laboratory Standard Institute (CLSI) 
[15]. After incubation at 37°C for 16 -18 hr on 
Mueller-Hinton agar (Murex Biotec Ltd, UK), the 
antibiotic inhibition zone diameters were 
measured and results obtained used to classify 
isolates as being resistant, intermediate or 
susceptible to a particular antibiotic using 
standard reference values by the CLSI [15]. The 
quality control strain used was E. coli American 
Type Culture Collection (ATCC) 25922. The 
choice of the antibiotics was based on regular 
usage in human and veterinary medicine, local 
availability, potential public health importance 
and recommendations from the guideline of 
antimicrobial susceptibility testing from CLSI [15]. 
 
Multiplex PCR analysis was performed on all the 
56 isolates to detect the antibiotic resistance 
genes aadA1 and aac(3)-IV which confers 
resistances to aminoglycosides, sul1 for folate 
pathway inhibitors, blaSHV and blaCMY for beta-
lactam resistance, cmlA for chloramphenicol 
resistance, tetA for tetracycline resistance and 
qnrA for resistance to the quinolones. Total DNA 
was extracted from pelleted cells of freshly 
prepared broth cultures of E. coil O157 isolates 
using the QIAamp DNA Mini Kit following the 
manufacturer’s instructions (QIAGEN, Germany). 
The eluted DNA was held at -20°C until used for 
PCR analyses. A 25 μL total individual reaction 
volume was set up comprising 5 μL template 

DNA, 12.5 μL of 2X master mix (TopTaq™ 
Master Mix, Qiagen, Hilden, USA), 0.5 μL of 
each primer from a working solution of 20 μM 
(final concentration of 0.4 μM) and nuclease-free 
water to make up the total volume. Primer sets 
used for the amplification of the different genes 
were as previously described [aadA1 (aadA1f 
and aadA1r), aac(3)-IV (aac(3)-IVF and aac(3)-
IVR), sul1 (sul1f and sul1r), blaSHV (blaSHVf and 
blaSHVr), blaCMY (blaCMYf and blaCMYr), cmlA (calf 
and colour) [16], tetA (tetAf and tetAr) [17] and 
qnrA (qnrAf and qnrAr) [18]]. Unless otherwise 
stated, initial denaturation and final extension for 
all PCR runs were set at 95°C for 15 min and 
72°C for 10 min respectively. Multiplex PCR 
targeting the aac(3)-IV, blaCMY, blaSHV and tetA 
genes was optimized at 30 cycles of 94°C for 1 
min, 56°C  for 1 min and 72°C  for 1 min. 
Multiplex PCR targeting the aadA1, sul1, cmlA 
and qnrA genes had the same cycling conditions 
as above except for the annealing temperature 
that was set at 55°C. PCR products were 
separated on 1.5% agarose gel stained with 
SYBR safe DNA Gel Stain (Invitrogen, Thermo 
Fisher Scientific, USA) and visualised under UV 
light using a Gel Documentation-XR (BIORAD, 
Hercules, CA). 
 
3. RESULTS 
 
The susceptibility of the 56 E. coli O157 isolates 
to nine different antibiotics was identified by 
measuring the antibiotic inhibition zone diameter 
(IZD) around impregnated discs on Mueller-
Hinton agar plates (Fig. 2). The susceptibility 
results showed no antimicrobial had 100% 



activity on all the isolates (Table 1). Three 
isolates were susceptible to all the antimicrobials 
while 53 were resistant to one or more drug. Of 
the nine antibiotics, ofloxacin demonstrated the 
best activity (55; 98.2%) against the
no resistance noted, followed by gentamicin 
(51, 91.1%), chloramphenicol (47, 83.9%), 
ciprofloxacin (46, 82.1%) and erythromycin (33, 
58.9%). Ampicillin was the least active drug with 
only 7 (12.5%) isolates susceptible.
 
Based on the phenotypic resistance patterns 
observed within the 53 isolates that were 
resistant to one or more antimicrobials, 24 
phenotypic resistance profiles (A1
generated. The phenotypic resistance profiles 
 

Fig. 2. Susceptibility test of E. coli
disks with IZD indicating susceptibility of isolates: 1

ampicillin; 4-gentamicin; 5
 

Table 1. Susceptibility of isolates to differ
 

Drug class Antibiotic 

Beta-Lactams Ampicillin (10

Aminoglycosides Gentamicin (10

Streptomycin (10

Tetracyclines Tetracycline (30

Fluoroquinolones Ciprofloxacin (5

Ofloxacin (5

Folate pathway inhibitor Trimethoprim (5

Phenicols Chloramphenicol(30

Macrolides Erythromycin (15
 

Akomoneh et al.; IJTDH, 31(2): 1-10, 2018; Article no.IJTDH

 
4 
 

activity on all the isolates (Table 1). Three 
isolates were susceptible to all the antimicrobials 
while 53 were resistant to one or more drug. Of 
the nine antibiotics, ofloxacin demonstrated the 
best activity (55; 98.2%) against the isolates with 
no resistance noted, followed by gentamicin           
(51, 91.1%), chloramphenicol (47, 83.9%), 
ciprofloxacin (46, 82.1%) and erythromycin (33, 

Ampicillin was the least active drug with 
only 7 (12.5%) isolates susceptible. 

the phenotypic resistance patterns 
observed within the 53 isolates that were 
resistant to one or more antimicrobials, 24 
phenotypic resistance profiles (A1-A24) were 
generated. The phenotypic resistance profiles 

showed 20 (37.7%) of the 53 resistant 
O157 were resistant to one or two antibiotics 
while 33 (62.3%) were multidrug resistant 
(resistant to three or more antibiotics) (Table 2). 
The isolates that were resistant to one or two 
antibiotics comprised seven profiles (A1
six isolates resistant to ampicillin alone while 
resistance to both ampicillin and tetracycline was 
common in five isolates. The multidrug
isolates comprised 17 profiles (A8
resistance profile A20 as the most prevalent 
shared by nine isolates. The pheno
resistance profile A24 was common to five 
isolates while the other phenotypic resistance 
patterns were shared by three or fewer isolates 
(Table 2). 

 
 

E. coli O157:H7 on Muller Hinton agar impregnated with antibiotic 
disks with IZD indicating susceptibility of isolates: 1-chloramphenicol; 2- streptomycin; 3

gentamicin; 5- trimethoprim; 6-ciprofloxacin 

Susceptibility of isolates to different antibiotics  

Antibiotic  Susceptibility patterns (n = 56)

Susceptible 

(%) 

Intermediate

(%) 

Ampicillin (10 μg) 7 (12.5) 2 (3.6) 

Gentamicin (10 μg) 51 (91.1) 0 (00) 

Streptomycin (10 μg) 25 (44.6) 6 (10.7) 

Tetracycline (30 μg) 15 (26.8) 1 (1.8) 

Ciprofloxacin (5 μg) 46 (82.1) 0 (00) 

Ofloxacin (5 μg) 55 (98.2) 1 (1.8) 

Trimethoprim (5 μg) 27 (48.2) 0 (00) 

Chloramphenicol(30 μg) 47 (83.9) 0 (00) 

Erythromycin (15 μg) 33 (58.9) 0 (00) 
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showed 20 (37.7%) of the 53 resistant E. coli 
O157 were resistant to one or two antibiotics 
while 33 (62.3%) were multidrug resistant 
(resistant to three or more antibiotics) (Table 2). 
The isolates that were resistant to one or two 
antibiotics comprised seven profiles (A1-A7) with 

stant to ampicillin alone while 
resistance to both ampicillin and tetracycline was 
common in five isolates. The multidrug-resistant 
isolates comprised 17 profiles (A8-A24) with 
resistance profile A20 as the most prevalent 
shared by nine isolates. The phenotypic 
resistance profile A24 was common to five 
isolates while the other phenotypic resistance 
patterns were shared by three or fewer isolates 

O157:H7 on Muller Hinton agar impregnated with antibiotic 
streptomycin; 3-

Susceptibility patterns (n = 56) 

Intermediate Resistant 

(%) 

47 (83.9) 

5 (8.9) 

25 (46.6) 

40 (71.4) 

10 (17.9) 

0 (00) 

29 (51.8) 

9 (16.1) 

23 (41.1) 
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Table 2. Phenotypic antimicrobial resistance profiles of E. coli O157  
 

Phenotypic pattern  Antimicrobial resistance profiles  Isolates (%) (n = 53) 

Resistant to one or two antibiotics  

A1 TRIR 1 (1.9) 
A2 TETR 3 (5.7) 
A3 AMPR 6 (11.3) 
A4 AMP

R
TRI

R
 3 (5.7) 

A5 TET
R
AMP

R
 5 (9.4) 

A6 TET
R
GEN

R
 1 (1.9) 

A7 CIP
R
AMP

R
 1 (1.9) 

Multidrug resistant  

A8 STR
R
AMP

R
TRI

R
 1 (1.9) 

A9 TET
R
STR

R
AMP

R
 1 (1.9) 

A10 TET
R
CHL

R
AMP

R
 1 (1.9) 

A11 TET
R
AMP

R
TRI

R
 2 (3.8) 

A12 AMPRTRIRERYR 1 (1.9) 
A13 TETRGENRAMPR 1 (1.9) 
A14 TETRSTRRAMPRERYR 2 (3.8) 
A15 TETRSTRRAMPRTRIR 2 (3.8) 
A16 TET

R
AMP

R
TRI

R
ERY

R
 2 (3.8) 

A17 TET
R
GEN

R
CIP

R
AMP

R
 1 (1.9) 

A18 TET
R
STR

R
TRI

R
ERY

R
 1 (1.9) 

A19 TET
R
GEN

R
STR

R
AMP

R
ERY

R
 1 (1.9) 

A20 TETRSTRRAMPRTRIRERYR 9 (17.0) 
A21 TETRCHLRCIPRSTRRAMPRTRIR 1 (1.9) 
A22 TETRCHLRCIPRSTRRAMPRERYR 1 (1.9) 
A23 GENRCHLRCIPRSTRRAMPRTRIRERYR 1 (1.9) 
A24 TET

R
CHL

R
CIP

R
STR

R
AMP

R
TRI

R
ERY

R
 5 (9.4) 

Total  53 
TET

R
, Tetracycline resistance; GEN

R
, Gentamicin resistance; CHL

R, 
Chloramphenicol resistance; CIP

R
, 

Ciprofloxacin resistance; STR
R
, Streptomycin resistance; AMP

R
, Ampicillin resistance; OFL

R
, Ofloxacin 

resistance;
 
TRI

R
, Trimethoprim resistance and ERY

R
, Erythromycin resistance 

 
The 56 isolates were also screened for the 
presence of genes coding for eight antimicrobial 
resistance determinants (Fig. 3). Five isolates 
had none of the resistance genes investigated. 
Fifteen isolates had at least one, 11 isolates had 
a combination of two different genes and 25 
carried at least three different resistance 
determinants (Table 3). All the eight genes were 
detected in one or more isolates. 
 
Table 4 details the resistance of the isolates to 
each antibiotic class against the resistance 
genes detected. The detection of resistance 
genes was generally consistent with expressed 
resistance to antibiotic although some 
discrepancies were observed. For example, the 
tetA gene responsible for tetracycline resistance 
was the most common genotypic determinant, 
present in 41(73.2%) isolates and consistent with 
phenotypic resistance by 40 (71.4%) of the 
isolates. With regards to aminoglycoside 
resistance, the aadA1 streptomycin resistance 

gene was also common in 21 of the 25 isolates 
that showed phenotypic resistance to 
streptomycin. On the other hand, the high 
frequency (32; 57.1%) of detection of the aac(3)-
IV gene depicting resistance to gentamicin, 
however, contradicted the low phenotypic 
resistance to the antibiotic (5; 8.9%). Of the 9 
chloramphenicol-resistant strains detected, 10 
carried the cmlA gene while among the 10 
isolates that showed resistance to the quinolone 
ciprofloxacin, the qnrA gene was detected in only 
four. A marked discrepancy in phenotypic 
resistance to the presence/detection of the 
genetic determinant was observed in resistance 
to the beta-lactam antibiotic ampicillin in which, 
out of the 47 isolates resistant to ampicillin, the 
blaCMY gene was detected only in 17 isolates and 
the blaSHV gene in 3 isolates. With regards to the 
Folate pathway inhibitor, the sulphonamide efflux 
resistance gene sul1 was detected in 5 (8.6%) of 
the isolates as opposed to the 29 (51.8%) that 
showed phenotypic resistance. 
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Fig. 3. Electrophoretic separation of amplified PCR products of multiplex PCR: tetA (lanes 1-6, 

8-11), blaCMY (lanes 6, 9), blaSHV (lanes 7-9) and aac(3)-IV (lanes 8-10) 
 

Table 3. Genotypic antimicrobial resistance profiles 
 

Number of 
genes detected  

Genes detected Genotypic 
pattern 

Number of 
isolates (%) 

0 - G1 5 (8.9) 
1 tetA G2 7 (12.5) 

aadA1 G3 5 (8.9) 
aac(3)-IV G4 3 (5.4) 

2 aadA1+tetA G5 2 (3.6) 
aac(3)-IV+tetA G6 5 (8.9) 
Sul1+tetA G7 2 (3.6) 
qnrA+ aac(3)-IV G8 1 (1.8) 
qnrA+blaCMY G9 1 (1.8) 

3 aadA1+ aac(3)-IV+tetA G10 5 (8.9) 
aadA1+sul1+tetA G11 1 (1.8) 
BlaSHV+ aac(3)-IV+tetA G12 1 (1.8) 
aac(3)-IV+ blaCMY+tetA G13 3 (5.4) 
Sul1+aac(3)-IV+tetA G14 2 (3.6) 

4 aac(3)-IV+ blaCMY+cmlA+tetA G15 4 (7.1)  
qnrA+aac(3)-IV+ blaCMY+tetA G16 1 (1.8) 
aadA1+aac(3)-IV+ blaCMY+tetA G17 1 (1.8) 
aadA1+ BlaSHV+aac(3)-IV+tetA G18 1 (1.8) 
aadA1+blaCMY+cmlA+tetA G19 1 (1.8) 

5 BlaSHV+aac(3)-IV+blaCMY+cmlA+tetA G20 1 (1.8) 
aadA1+aac(3)-IV+ blaCMY+cmlA+tetA G21 3 (5.4) 

6 aadA1+qnrA+aac(3)-IV+ blaCMY+cmlA+tetA G22 1 (1.8) 
Total   56 (100) 

 

4. DISCUSSION  
 

Antimicrobial resistance can emerge through 
indiscriminate use of antibiotics in animals, with 
the subsequent spread of resistance among the 
bacteria [19]. This has influenced the frequency 
of multidrug-resistant bacteria [11]. These drug-
resistant pathogenic bacteria can spread through 
the food chain to humans leading to treatment 

failure. This might explain why despite the limited 
use of antibiotics in the treatment of human E. 
coli O157 infections, mark resistance to 
commonly used drugs in human and veterinary 
medicine is still being reported. This has been 
recognized by the WHO [20] as a serious global 
human and animal health problem. Our 
susceptibility results showed no antimicrobial had 
100% activity and only three isolates were 

1 2 3 4 5 6 7 8 9 10 11 M

768bp blaSHV 

500bp 

286bp aac(3)-IV 

577bp tetA 

462bp blaCMY 
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Table 4. Detection of the antimicrobial resistance genes in the E. coli O157:H7 isolates 
 

Resistant phenotype Number of 
isolates x/56 (%) 

Genes detected 

Gene Frequency in isolates (n=56) (%) 

Streptomycin resistance 25 (46.6) aadA1 21 (37.5) 
Gentamicin resistance 5 (8.9) aac(3)-IV 32 (57.1) 
Folate pathway inhibitor 29 (51.8) sul1 5 (8.6) 
Ampicillin (Beta-lactams) 
resistance 

47 (83.9) blaSHV 3 (5.4) 
blaCMY 17 (30.4) 

Chloramphenicol resistance 9 (16.1) cmlA 10 (17.9) 
Tetracycline resistance 40 (71.4) tetA 41 (73.2) 
Fluoroquinolones resistance 10 (17.9) qnrA 4 (7.1) 

 
susceptible to all the antibiotics. The 
development of resistance to these drugs by E. 
coli poses a major challenge in both human and 
veterinary medicine as they are broadly used in 
the treatment of patients and in veterinary 
practice. In agreement with van den Bogaard and 
Stobberingh [21], this is particularly worrisome as 
E. coli is a reservoir of antimicrobial resistance 
genes which could be spread horizontally to 
other pathogenic bacteria including other 
members of the family Enterobacteriaceae. 
Investigating the prevalence of antimicrobial 
resistant E. coli isolates, therefore, can              
facilitate risk assessment of infection and the 
choice of effective antimicrobial agents in clinical 
settings.  
 
Ampicillin, tetracycline and trimethoprim each 
showed less than 50% activity. These findings 
are in line with numerous reports [22,23,24] on 
high antimicrobial resistance to these drugs with 
most reports citing their use as a growth 
promoter and in routine chemoprophylaxis 
among livestock as well as self-medication in 
humans [25] as the major causes. Tetracycline 
and penicillin (ampicillin) are first-line drugs 
which are routinely prescribed or readily 
purchased over the counter for self-medication 
[26]. The development of antimicrobial resistance 
might limit their use leading to treatment failure 
and onset of complications. In agreement with 
Reuben and Owuna [24], streptomycin 
resistance was below average, and this could be 
probably due to the relatively less exposure to 
the antibiotic as a result of its discouraged usage 
and the fact that it is usually administered 
intravenously, which restricts its indiscriminate 
use [27]. The quinolones ciprofloxacin and 
ofloxacin, the aminoglycoside gentamicin and the 
phenicol chloramphenicol all showed great 
activity, agreeing with the findings of Iwu et al. 
[28] that they are the drug of choice for E. coli 
O157 infections. 

Multiple antimicrobial resistance can develop as 
a result of antimicrobial selection pressure in 
livestock or humans [29]. Multidrug resistance, 
the resistance of an isolate to more than two 
antimicrobials was a common phenomenon in 
this study. This was observed in 33 of the 56 
isolates with 17 different phenotypic multidrug 
resistance profiles noted. Tetracycline and 
ampicillin resistance was detected in almost all 
the phenotypic resistance patterns observed 
(Table 2). These results are consistent with other 
findings [3,27] and are linked to various aspects 
including the indiscriminate use of antibiotics in 
food-producing animals [30]. These multidrug-
resistant bacteria are either disseminated to 
humans through food [31] or are shed into the 
environment by cattle, leading to a widespread 
dissemination of antibiotic-resistant genes to the 
resident bacteria in the environment [32]. 
 
According to Munita et al. [9] and Schroeder et 
al. [33], antimicrobial resistance can occur 
through stable genetic change heritable from 
generation to generation through specific 
mechanisms including mutation, transduction, 
transformation, and or conjugation. In this study, 
we also identified the genetic determinants 
implicated in drug resistance, and these provided 
important clues in explaining the phenotypic 
resistance trends observed. Eight different 
resistance genes were searched in the 56 
isolates and the results were generally consistent 
with the resistant phenotypes observed. To begin 
with, the high phenotypic resistance seen in 
tetracycline (40; 71.4%) could be associated to 
the detection of tetA gene (41; 73.2%) among the 
isolates and is in agreement with the findings of 
Messele et al. [34]. Of the 25 streptomycin-
resistant isolates, the aminoglycoside resistant 
gene aadA1 was found in 21 (84%) isolates, and 
was similar to other previous studies [35,36] 
where it was hypothesised that, in cases where 
the aadA1 gene was not identified, streptomycin 
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resistance may be due to other resistance genes 
(strA or strB for instance) which were not 
screened in this study. On the other hand, one of 
the four classes of the aac(3) acetyltransferases,  
aac(3)-IV associated with gentamicin resistance 
in E. coli [36] was detected in 32 (57.1%) of the 
56 isolates while only 5 of these showed 
phenotypic resistance to gentamicin. Similar 
contrasting findings have been reported by Yue 
and Xiu-Ying [37] in which the aac(3)-II was 
detected in 12 E. coli O157 isolates with none 
showing resistance to gentamicin. Based on 
similar findings [38,39], it is possible that 
resistance genes may not be expressed or 
expressed in a low level in isolates and the 
search for antimicrobial resistance genes should 
not only be limited to phenotypically resistant 
isolates. The marked discrepancy observed in 
phenotypic resistance to the presence/detection 
of the genetic determinant to the beta-lactam 
antibiotic ampicillin could be due to the fact that 
the isolates carry other or even novel genetic 
resistance determinants. This, considering the 
fact that ampicillin is a commonly used antibiotic 
in animal production and is easily accessible 
over the counter. The over use of this drug may 
create several modes of resistance. We also 
detected the cmlA, sul1, qnrA and blaSHV genes 
as previously reported [37,39], highlighting the 
high proliferation and dissemination of resistant 
genes in this region. 
 

5. CONCLUSIONS 
 
Escherichia coli O157 strains circulating in 
Cameroon have developed strategies for 
resistance to currently used drugs. These strains 
harbour a number of resistance genes and 
demonstrate a high prevalence of multidrug 
resistance to most of the antibiotics tested. 
These observations suggest that the 
indiscriminate use of antibiotic in the animal 
production line whether as therapeutics or 
prophylaxis imposes a selection pressure and 
the circulation of this pathogen in cattle poses an 
environmental and human risk. 
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