Nitric Oxide and Hydrogen Sulfide Coordinately Reduce Glucose Sensitivity and Decrease Oxidative Stress via Ascorbate-Glutathione Cycle in Heat-Stressed Wheat (Triticum aestivum L.) Plants

Iqbal, Noushina and Umar, Shahid and Khan, Nafees A. and Corpas, Francisco J. (2021) Nitric Oxide and Hydrogen Sulfide Coordinately Reduce Glucose Sensitivity and Decrease Oxidative Stress via Ascorbate-Glutathione Cycle in Heat-Stressed Wheat (Triticum aestivum L.) Plants. Antioxidants, 10 (1). p. 108. ISSN 2076-3921

[thumbnail of antioxidants-10-00108.pdf] Text
antioxidants-10-00108.pdf - Published Version

Download (2MB)

Abstract

The involvement of nitric oxide (NO) and hydrogen sulfide (H2S) in countermanding heat-inhibited photosynthetic features were studied in wheat (Triticum aestivum L.). Heat stress (HS) was employed at 40 °C after establishment for 6 h daily, and then plants were allowed to recover at 25 °C and grown for 30 days. Glucose (Glc) content increased under HS and repressed plant photosynthetic ability, but the application of sodium nitroprusside (SNP, as NO donor) either alone or with sodium hydrosulfide (NaHS, as H2S donor) reduced Glc-mediated photosynthetic suppression by enhancing ascorbate-glutathione (AsA-GSH) metabolism and antioxidant system, which reduced oxidative stress with decreased H2O2 and TBARS content. Oxidative stress reduction or inhibiting Glc repression was maximum with combined SNP and NaHS treatment, which was substantiated by 2-4-carboxyphenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (cPTIO) and hypotaurine (HT), scavengers for NO and H2S, respectively. The scavenge of H2S reduced NO-mediated alleviation of HS suggesting of its downstream action in NO-mediated heat-tolerance. However, a simultaneous decrease of both (NO and H2S) led to higher Glc-mediated repression of photosynthesis and oxidative stress in terms of increased H2O2 content that was comparable to HS plants. Thus, NO and H2S cooperate to enhance photosynthesis under HS by reducing H2O2-induced oxidative stress and excess Glc-mediated photosynthetic suppression.

Item Type: Article
Subjects: STM Archives > Agricultural and Food Science
Depositing User: Unnamed user with email support@stmarchives.com
Date Deposited: 12 Jul 2023 12:47
Last Modified: 03 Jun 2024 12:47
URI: http://science.scholarsacademic.com/id/eprint/1313

Actions (login required)

View Item
View Item