Tools for the Recognition of Sorting Signals and the Prediction of Subcellular Localization of Proteins From Their Amino Acid Sequences

Imai, Kenichiro and Nakai, Kenta (2020) Tools for the Recognition of Sorting Signals and the Prediction of Subcellular Localization of Proteins From Their Amino Acid Sequences. Frontiers in Genetics, 11. ISSN 1664-8021

[thumbnail of pubmed-zip/versions/1/package-entries/fgene-11-607812/fgene-11-607812.pdf] Text
pubmed-zip/versions/1/package-entries/fgene-11-607812/fgene-11-607812.pdf - Published Version

Download (1MB)

Abstract

At the time of translation, nascent proteins are thought to be sorted into their final subcellular localization sites, based on the part of their amino acid sequences (i.e., sorting or targeting signals). Thus, it is interesting to computationally recognize these signals from the amino acid sequences of any given proteins and to predict their final subcellular localization with such information, supplemented with additional information (e.g., k-mer frequency). This field has a long history and many prediction tools have been released. Even in this era of proteomic atlas at the single-cell level, researchers continue to develop new algorithms, aiming at accessing the impact of disease-causing mutations/cell type-specific alternative splicing, for example. In this article, we overview the entire field and discuss its future direction.

Item Type: Article
Subjects: STM Archives > Medical Science
Depositing User: Unnamed user with email support@stmarchives.com
Date Deposited: 07 Feb 2023 12:17
Last Modified: 28 Aug 2024 13:38
URI: http://science.scholarsacademic.com/id/eprint/160

Actions (login required)

View Item
View Item